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Abstract

We introduce a new stylized fact: the hump-shaped behavior of slopes and coefficients of

determination as a function of the aggregation horizon when running (forward/backward) pre-

dictive regressions of future excess market returns onto past economic uncertainty. To justify

this finding formally, we propose a novel framework in which predictability is a property of

low-frequency components of both excess market returns and economic uncertainty. We show

that predictability on these low-frequency components (i.e., scale-specific predictability) trans-

lates theoretically into hump-shaped patterns of slopes and coefficients of determination upon

forward/backward regressions on the raw series. If past long-run uncertainty predicts future

long-run returns, it also has to predict future long-run dividend growth. We report that it does

so strongly.

JEL classification: C22, E32, E44, G12, G17

Keywords: long run, predictability, aggregation

∗The results in this paper subsume, and greatly extends, results previously presented in a 2012 paper called “The
scale of predictability.” We are grateful to Yanqin Fan (the Toulouse discussant), Lars P. Hansen, C. Julliard, B.
Kelly, L. Mancini (the EFA discussant), N. Meddahi, A. Neuberger and A. P. Taylor for their helpful comments. We
thank seminar participants at many conferences and universities.
†Johns Hopkins University and Edhec-Risk Institute. E-mail: fbandi1@jhu.edu
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1 Introduction

The introduction to the 2013 Nobel for Economic Sciences states: “There is no way to predict

whether the price of stocks and bonds will go up or down over the next few days or weeks. But it is

quite possible to foresee the broad course of the prices of these assets over longer time periods, such

as the next three to five years...”

Hard-to-detect predictability over short horizons is generally viewed as the result of a low signal-

to-noise problem. The magnitude of shocks to returns swamps predictable variation in expected

stock returns. The aggregation of stock returns over longer horizons, however, operates as a signal

extraction process uncovering predictability.

Existing work (Bandi and Perron (2008)) has highlighted the empirical usefulness of aggregating

both the regressand (excess market returns) and the regressor (the market return predictor). Specif-

ically, Bandi and Perron (2008) have suggested running adapted (to time t information) regressions

of forward aggregated returns (i.e., long-run future returns) on backward aggregated predictors

(long-run past market variance, in their case), rather than on disaggregated predictors, as common

in the literature. The use of forward/backward aggregation was shown to lead to a strengthening of

variance-induced predictability over the long-run, the 10-year horizon being the longest prediction

horizon considered in the paper. The long-run predictability of past variance was reported to be

robust to the use of alternative variance notions (Tamoni (2011) uses consumption variance) and

the dynamics of the variance process (Sizova, 2013, assumes long memory in variance). Among

other stylized facts regarding stock returns, such predictability was justified in the context of an

asset pricing model with loss aversion (see Bonomo, Garcia, Meddahi, and Tedongap (2015)).

We make four contributions. First, we show that the relation between future excess market

returns and past uncertainty, as proxied by market variance (Bandi and Perron (2008)), consumption

variance (Tamoni (2011)) and economic policy uncertainty (EPU, henceforth; see Baker, Bloom,

and Davis (2013)), is hump-shaped. The forward/backward regressions are conducted over horizons

of aggregation reaching 20 years, thereby doubling the 10-year horizon spanned in the existing work.

The peak of predictability is around 16 years. Estimated slopes and R2s feature increasing (resp.

decreasing) dynamics before (resp. after) the 16-year mark. Around 16 years, the reported R2s

may reach a value of about 55%.

Second, we show that a traditional predictive system in which excess market returns are predicted
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by a persistent uncertainty process would find it hard to replicate the structure and magnitude of

the reported hump-shaped behavior upon two-way aggregation. Theory and simulations reported

in the paper lead to this conclusion. If a traditional predictive system is an unlikely data generating

process for the reported result, what would a more likely data generating process look like?

In his third contribution, this paper proposes a component-wise model in which returns and un-

certainty can be viewed as linear aggregates of components with heterogeneous levels of persistence

operating over different frequencies. In the context of the model, predictability is not viewed as a

property of the raw series. Rather, it is a property of individual return and uncertainty components.

We dub it scale-specific predictability. Importantly, we show theoretically that should components

with cycles of suitable lengths be linked by a predictability relation, then two-way aggregation

would yield hump-shaped patterns in estimated βs and R2s. Empirically, we filter excess returns

and uncertainty components and find predictability between components with cycles between 8 and

16 years. In agreement with the implications of theory, this scale-specific predictability should yield

a hump-shaped pattern with a peak at 16 years upon two-way aggregation, as found in the data.

Fourth, we conceptualize the predictive ability of economic uncertainty within the classical

Campbell and Shiller’s present value identity (Campbell and Shiller (1988)).

What the present value identity does is, by construction, attributing a fundamental predictive

role to the dividend-to-price ratio.1 When seen through the lens of the identity, other successful

predictors are, in fact, often viewed as proxies for it. As an example, alternative financial ratios,

like earnings-to-price and book-to-market, perform reasonably well. Like in the case of dividend-

to-price, they all have price in the denominator. Low prices are thought to predict high expected

returns, thereby justifying their predictive performance as well as that of the more celebrated

dividend-to-price ratio.

What the present value identity does not do is excluding the predictive ability of variables other

than the dividend-to-price ratio. Yet, identifying variables capable to add to the predictive ability

of the dividend-to-price ratio, particularly over the long run, is known not to be an easy task. The

successful consumption-to-wealth ratio (see Lettau and Ludvigson (2001)), for instance, appears to

change the term structures of short and medium-term return predictability, but does not lead to

1As emphasized by Cochrane (2008), ignoring possible bubble terms, the dividend-to-price ratio should predict
returns, dividend growth or both. If it does not predict the latter, it ought to predict the former, and vice versa.
Cochrane (2008), in particular, stresses that the predictive ability of the dividend-to-price ratio for long-run returns
is economically compelling, long-run dividend growth predictability being not so.
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significant long-run return forecasts (Cochrane (2011)).

We find that the orthogonal (with respect to the dividend-to-price ratio) component of past

long-run uncertainty, whether given by market variance, consumption variance, or EPU, leads to

superior return predictability over the long run.

In order to immediately visualize matters, we report a graphical representation analogous to

that provided by Cochrane (2011) in his Figs. 3 and 4. Figs. 1(a), 1(b) and 1(c), below, plot

returns over three different horizons (1 year, 7 years, and 10 years) as well as return forecasts based

on the dividend-to-price ratio alone, on a proxy for past long-run uncertainty (past long-run market

variance, in this case) alone, and on the dividend-to-price and past long-run market variance jointly.

The effect is apparent. As we transition to longer horizons, past long-run market variance

captures more and more of the slow-moving adjustments in long-run returns failed to be captured

by the dynamics of the dividend-to-price ratio. The numbers are remarkable. At 1 year, the

dividend-to-price ratio captures 10% of the variability in returns, long-run variance less than 3%.

At 7 years, the R2 associated with the dividend-to-price ratio reaches 35% and that associated

with long-run variance 30%, at 10 years the corresponding numbers are near 42% for both. Said

differently, the joint R2 from a regression of 10-year returns on both variables is close to 85%.

Past long-run uncertainty serves as a powerful long-run predictor, but improves predictability

at all horizons. To highlight only a few more numbers using market variance again, the joint use

of dividend-to-price and the orthogonal component of past long-run market variance leads to R2

values higher than 40% at the 4 year horizon, higher than 50% at the 6-year horizon, higher than

70% at the 8-year horizon and higher than 80% at the 9-year horizon.

We show that the orthogonal component of past long-run uncertainty also predicts dividend

growth strongly. Some numbers: at 5 years, 10 years, and 15 years, the R2s from regressions of

long-run dividend growth (without continuous compounding) onto past long-run market variance

are 36%, 51%, and 60%, respectively. The corresponding numbers for the same regressions with the

dividend-to-price ratio as a regressor are 0.9%, 3%, and 0.27%.

Because Campbell and Shiller’s identity implies that all information about changes in long-

run returns minus long-run dividend growth is contained in the dividend-to-price ratio, anything

which is orthogonal to the dividend to price ratio, and predicts returns, should lead to an exactly

offsetting prediction for dividend growth. Hence, one should expect to find long-run dividend growth

predictability in the presence of long-run return predictability. Importantly, we show in the paper
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(a) Actual and forecast 1-year returns
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(b) Actual and forecast 7-year returns
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(c) Actual and forecast 10-year returns

Figure 1: Plot of actual vs. forecast returns at the 1, 7, and 10 year horizons. We line up the
forecasts with the actual returns, i.e. we plot α+ βx,Hxt together with Rt,t+H .
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that indirect long-run dividend growth regressions are a more informative test of long-run return

predictability than the direct long-run return regressions themselves. This is true because of (1)

the Campbell and Shiller identity, (2) the orthogonality of the regressor(s) and (3) the long-run

predictability of the dividend-to-price ratio.

These indirect dividend growth regressions confirm the long-run predictive ability of past eco-

nomic uncertainty strongly.

2 Hump-shaped dynamics and scale-specific predictability : a pre-

view

Fig. 2 plots R2 values from regressions of forward aggregated excess market returns onto backward

aggregated uncertainty (as proxied by either market variance, consumption variance, or (squared)

EPU). The x axis is the common horizon over which forward and backward aggregation are con-

ducted. We observe a marked hump-shaped behavior with a peak in the R2 values reaching 55%

around the 16-year horizon. Before and after, the R2s have a roughly monotonic upward and

downward trend, respectively.

Classical predictive system would find it hard to replicate the observed hump-shaped behavior.

This is easy to see in theory. We will return to it using the simulations in Section 9.

Assume yt+1 denotes future excess market returns and xt denotes past uncertainty. A traditional

predictive system (on a demeaned xt) would write:

yt+1 = α+ βxt + ut+1, (1)

xt+1 = ρxt + εt+1, (2)

where ut+1 and εt+1 are possibly correlated shocks and 0 < δ < 1.

When aggregating yt+1 forward and xt backward over an horizon h, the theoretical slope of the

regression on forward/backward aggregates becomes βρh, but βρh → 0 as h → ∞.2 Similarly, the

2The reported “slope” should be intended as the resulting slope from direct forward/backward iterations of the
model. In light of the dependence between the regression residuals yielded by the iterations and the backward-
aggregated regressors, this slope does not coincide with the beta of the conditional mean of forward-aggregated re-
gressands onto backward-aggregated regressors. Such beta, for a large aggregation horizon h, would be approximately
β

1+ρ
1
h

. Hence, it would also vanish as h→∞. We thank Nour Meddahi for discussions about this point.
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Figure 2: R2 values obtained by regressing forward-aggregated excess market returns on backward
aggregated market variance (blue line, with square), consumption variance (red line, with circles),
and (squared) economic policy uncertainty (black line, with diamonds) for different levels of aggre-
gation (on the horizontal axis).

R2 should go to zero with the horizon of aggregation. Fig. 2 shows, instead, that the R2 increases

steeply to about 55% before decreasing equally sharply.

Assume now excess market returns and economic uncertainty, yt and xt, are linear aggregates

of J > 1 uncorrelated, mean-zero components, or details, y
(j)

k2j
and x

(j)

k2j
with k ∈ Z and 1 ≤ j ≤ J .

The details are elements of the specific series generated by scale-specific (with j denoting scale) and

time-specific (with k2j denoting “dilated” scale time for a running k ∈ Z and a fixed j) shocks.

More explicitly, the detail associated with the j-th scale captures informational flow between time

k2j−2j and time k2j ∀k. Lower scales are associated with higher resolution, higher frequencies, and

lower calendar-time persistence in the impact of sudden economic shocks (like, e.g., macroeconomic

news announcements, Andersen, Bollerslev, Diebold and Vega, 2003). Higher scales, on the other

hand, are affected by shocks which are relatively smaller in size but persist in the system longer, as is

typical of medium and long-run shocks, such as those induced by political phases (Santa-Clara and

Valkanov, 2003), technological innovation (Hobijn and Jovanovic, 2001, Pastor and Veronesi, 2009,

and Gârleanu, Panageas, and Yu, 2012), and demographic changes (Abel, 2003, and Geanakoplos,

Magill and Quinzii, 2004).
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In contrast with the system above, below we demonstrate formally that an otherwise analogous

scale-wise predictive system on details of the raw series, i.e.,

y
(j)

k2j+2j
= βjx

(j)

k2j
+ u

(j)

k2j+2j
, (3)

x
(j)

k2j+2j
= ρjx

(j)

k2j
+ ε

(j)

k2j+2j
, (4)

with k ∈ Z and 1 ≤ j ≤ J , leads to the reported empirical pattern in R2 values upon two-

way aggregation of the raw series provided the dyadic frequency 2j−1, 2j over which scale-specific

predictability applies captures economic fluctuations over a 8-to-16 year horizon.

We note that predictability on the details amounts to a spectral feature of the two series of inter-

est, one that carries important economic content in that it directly relates frequency to predictable

variation in the return process. Predictability upon forward/backward aggregation is, instead, a

way to translate scale-specific predictability into return predictability for the long haul, with all of

its applied implications, including long-run asset allocation. Importantly, the mapping between the

two is a natural outcome of scale-wise predictive systems, as our treatment below shows.

3 The literature

The evaluation of low-frequency contributions to economic and financial time series has a long

history, one which we can not attempt to review here. Barring fundamental methodological and

conceptual differences having to do with our assumed data generating process, the approach adopted

in this paper shares features with successful existing approaches.

As in Beveridge and Nelson (1981), who popularized time-series decompositions into stochastic

trends and transitory components, we can view the details as components (more than two, in our

case) with different levels of (calendar-time) persistence operating at different frequencies. In our

framework, the components’ shocks are, again, functions of both time and scale.

Comin and Gertler (2006) argue that the common practice, in business-cycle research, of in-

cluding longer than 8-year oscillations into the trend (see e.g., Baxter and King, 1999), thereby

effectively removing them from the analysis, may be associated with significant loss of information.

We aim at capturing analogous effects. While Comin and Gertler (2006) decompose a series into

a “high-frequency” component between 2 and 32 quarters and a “medium-frequency” component
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between 32 and 200 quarters, our detail extraction allows us to disentangle multiple driving forces

associated with different persistence levels within their assumed frequencies.

News arrivals at various frequencies, and the importance of shocks with alternative levels of

persistence, also characterize the multifractal regime switching approach of Calvet and Fisher (2001,

2007). Multifrequency modelling and identification are conducted differently in the present paper.

Importantly, our focus is on scale-specific economic relations and the role played by aggregation

in their evaluation, rather than on inference, pricing and learning at high frequencies (daily, in

Calvet and Fisher, 2007). To this extent, we explicitly spell out the conceptual links between the

assumed scale-wise data generating process, its identification, and aggregation with its low-frequency

implications.

As in Hansen and Scheinkman (2009), we employ operators to extract low-frequency information.

In our case, this is the low-frequency information embedded in the details.

Essential scale-wise information in the extracted details can be summarized by a finite number

of non-overlapping, “fundamental” points (indexed, earlier, by k2j with k ∈ Z), the result of an

econometric process called “decimation”(see Appendix A). These points can be viewed as being

akin to “the small number of data averages” used by Müller and Watson (2008) to identify low-

frequency information in the raw data. In our framework, however, they are scale-specific and, as

such, particularly useful to formalize our notion of frequency-specific, or scale-specific, predictability.

In recent work, Bollerslev, Osterrieder, Sizova, and Tauchen (2013) also evaluate the relation

between alternative notions of variance (and the variance risk premium) and market returns across

frequencies. Their work focuses on dependencies over frequencies in excess of 3.5 months, between

a day and 3.5 months, and intra-daily. Their emphasis is, therefore, on higher frequencies than in

this paper. Over their assumed frequencies, their study finds mild compensations for variance risk,

but a statistically significant compensation associated with the variance risk premium (Bollerslev,

Tauchen and Zhou, 2009). We provide a framework to jointly explain mild risk-return trade-offs

at high frequencies (as in Bollerslev et al., 2013, among others) and strong risk-return trade-offs at

low frequencies, as in this paper. We show (in Proposition I below) that consistency between the

two can be the outcome of a novel data generating process allowing for scale-specific predictability

over suitable, low-frequency, scales.

Scale-wise specifications have proven successful in consumption models to explain the market

risk premium (Ortu, Tamoni, and Tebaldi (2013) and Tamoni (2011)) and define granular notions
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of systematic risk through scale-wise betas (Bandi and Tamoni, 2013). This paper formalizes the

role of scale-wise specifications in the context of a new methodological approach to predictability.

The work on stock return predictability is broad. The literature documents return forecasta-

bility induced by financial ratios, see e.g. Campbell and Shiller (1988), Lamont (1998), Kelly and

Pruitt (2013), interest rate variables, see e.g. Fama and Schwert (1977), Fama and French (1989)

and macroeconomic variables, see e.g. Lettau and Ludvigson (2001), Menzly, Santos, and Veronesi

(2004), Nelson (1976), Campbell and Vuolteenaho (2004). The notion of return predictability has led

to controversy (e.g., Welch and Goyal (2008), for a critique, and Cochrane (2008), for a well-known

defense).

The literature on dividend growth predictability is less voluminous, the consensus being that

growth rates of fundamentals, such as dividends or earnings, are less forecastable than returns

when using financial ratios as predictors. Nonetheless, recent work shows that dividend growth

is predictable by the dividend yield (see, e.g., van Binsbergen and Koijen (2010) and Rangvid,

Schmeling, and Schrimpf (2014)) or by a consumption-(labor) income ratio, see Lettau and Ludvig-

son (2005). Koijen and Nieuwerburgh (2011) survey the return and dividend growth predictability

debate through the lens of the present-value relation.

4 Low-frequency humps

4.1 Equity returns on market variance

The analysis is based on yearly data from 1930 to 2014. Appendix D describes the data and the

construction of the variables. We begin with forward/backward regressions of long-run future excess

market returns yt = rt on long-run past variance xt = v2
t :

rt+1,t+h = αh + βhv
2
t−h+1,t + ut,t+h, (5)

where rt+1,t+h and v2
t−h+1,t are aggregates of excess market returns and return variances over an

horizon of length h. Empirical results are displayed in Table 3-Panel A1 (horizons 1 to 10 years) and

Table 3-Panel A2 (horizons 11 to 20 years). Panel A1 and A2 report the estimated regression coef-

ficient, the adjusted R2 statistic in square brackets, and an heteroskedasticity and autocorrelation-

consistent t-statistic for the hypothesis that the regression coefficient is zero (in parentheses). The
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table also reports, in curly brackets, the rescaled t-statistic recommended by Valkanov (2003) to

test the hypothesis that the regression coefficient is zero. Valkanov’s methods have become stan-

dard tools in the predictability literature. We use them here to provide an additional measure of

statistical uncertainty and, therefore, evaluate robustness. We recall, however, that they are justi-

fiable under a classical data generating process (as in Eq. (1) and (2)), regressors near unity, and

aggregation of the regressand, of the regressor, or both.3

[Insert Table 3 about here]

In Table 3-Panel A1, we report horizons of aggregations up to 10 years only: future excess

market returns are correlated with past market variance. Dependence increases with the horizon,

and is strong in the long run, with R2 values between 8 and 10 years ranging between 14.7% and

36.1% (Bandi and Perron (2008)).

In Table 3-Panel A2 we extend the two-way regressions to horizons between 11 years and 20

years. The R2 values reach their peak (around 55%) at 16 years. The structure of the R2s, before

and after, is roughly tent-shaped (see Fig. 2). Using Valkanov’s rescaled t-statistics as a metric, past

market variance is a powerful predictor of future excess returns (leading to statistically significant

slope estimates at the 2.5% level) for horizons ranging between 11 and 16 years.

4.2 Equity returns on consumption variance

Replacing market variance with consumption variance does not modify the previous results in a

meaningful way. Two-way aggregation generates the largest R2 values over horizons longer than

10 years (Table 4-Panel A1 and Panel A2). The largest R2 is obtained at the 12 year horizon

(55.7%) but the values between 11 years and 16 years are all consistently between 46% and 55%,

with minimal differences between them. For shorter and longer horizons, the R2s decline with a

tent-shaped, almost monotonic, structure. They are between 0 and 5% over time periods between

1 and 5 years and close to 3% over the 20-year horizon.

[Insert Table 4 about here]

3We discuss construction in Appendix E.
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4.3 Equity returns on (squared) EPU

Results are provided in Table 5. They are analogous to the corresponding findings for market and

consumption variance. We will not comment on them in detail.

[Insert Table 5 about here]

Two observations are in order.

One may argue that, by generating stochastic trends, forward/backward aggregation could lead

to spurious (in the sense of Granger and Newbold, 1974, and Phillips, 1986) predictability. If

spuriousness were induced (somewhat mechanically) by aggregation, however, contemporaneous

(i.e., forward/forward) aggregation should also lead to patterns that are similar to those found with

forward/backward aggregation. In all cases above, one could show that this is not the case.4 In

other words, contemporaneous aggregation does not lead to any of the effects illustrated earlier

(including consistency between the slope estimates obtained from the aggregated series and from

the components). In addition, spurious behavior would prevent a tent-shape pattern from arising

in the slopes, t-statistics and R2 from predictive regressions on the aggregated series because it

would simply lead to upward trending behavior in both. We will show that tent-shaped patterns

are a natural by-product of an alternative data generating process. We will also return to these

considerations in the simulation section.

Disaggregated asset pricing models which solely imply dependence between excess market re-

turns and (autoregressive) conditional variance at the highest resolution can not easily deliver the

reported findings upon aggregation. As discussed in Section 2, in fact, forward/backward aggrega-

tion of the system in Eqs. (1)-(2) would give rise to a theoretical slope equal to βρh, but βρh → 0

as h → ∞, an outcome which is in contrast with the reported empirical evidence. As shown by

Sizova (2013), a “large” ρ, captured by long memory in her framework, would help over horizons

over which the statistics are reported as being monotonically increasing (1 to about 16 years). A

long-memory variance process would, however, find it hard to capture the hump-shaped dynamics

illustrated above and further discussed below.

Again, we argue that this argument points to an alternative data generating process, one to

which we now turn.

4The corresponding tables are not reported for conciseness but can be provided by the authors upon request.
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5 Scale-wise predictive systems

We begin with an intuitive discussion. First, the informational flow at each scale j is represented

by a mean-zero weakly-stationary (in scale time) component (or detail), denoted by x(j), localized

with respect to time and scale j. The evolution of the generic jth-detail time series is defined on a

dyadic time grid k2j with k ∈ Z. In particular, each detail is expressed as an autoregressive process

for which the conditional mean and the conditional variance are left unspecified, namely,

x
(j)

k2j+2j
= µ

(
x

(j)

k2j
, x

(j)

k2j−2j
, ...
)

+ σ
(
x

(j)

k2j
, x

(j)

k2j−2j
, ...
)
ε

(j)

k2j+2j
for all j = 1, 2, ...J , (6)

where the scale-specific shocks ε
(j)

k2j
are assumed to be uncorrelated across scales, white noise, mean

zero and variance one. We note that every observation x
(j)

k2j
may be viewed as representing the

outcome of informational flows between time k2j − 2j and time k2j . The informational flows are

induced by scale-specific shocks ε
(j)

k2j
.

Second, we model an observed time series xt as the unique outcome of a suitable aggregation

scheme applied to the details (x(j)). A sensible proposal would be to assume that the aggregation

scheme is linear and each observation xt can be expressed as an additive collection of scale-specific

processes plus a mean term π:

xt =

J∑
j=1

x
(j)
t + π. (7)

However, Eq. (6) specifies the dynamics of the details on a dyadic grid, i.e., x
(j)

k2j
, while reconstruc-

tion of xt using Eq. (7) would require that x
(j)
t is known for any time t, and hence on the finest

grid, something which would be inconsistent with Eq. (6). Thus, while Eq. (7) captures the logic

of our approach, it cannot lead to an exact mapping between the details and the final time series

xt.

The mapping from the detail-specific observations
{
x

(j)

t−k2j

}
j=1,..,J, k∈Z

to the aggregate process

{xt−n}n∈Z is, instead, conducted using the so-called inverse Haar matrix (see Appendix A and C.1,

for details).

In multiresolution analysis (see, e.g., Mallat, 1993), the Haar matrix is routinely used to filter{
x

(j)

t−k2j

}
j=1,..,J, k∈Z

from {xt−n}n∈Z. While we also filter the details using the Haar matrix, one

methodological novelty of this work is to operate in the opposite direction, i.e., to propose a data
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generating process which specifies the law of motion of the details
{
x

(j)

t−k2j

}
j=1,..,J, k∈Z

and, only

then, obtains each observation xt as a linear combination of the details themselves. In our specifi-

cation, the coefficients of the linear combination are uniquely determined by the rows of the inverse

Haar matrix. We call this data generating process scale-wise autoregressive.

A couple of observations are now in order. First, why Haar? There are two reasons, the first

has a methodological nature, the second is economically motivated.

1. The structure of the Haar matrix is particularly helpful for us to understand and formal-

ize, below, the connection between scale-wise predictability and predictability upon two-way

aggregation without introducing unnecessary complications. Proposition I will, in fact, be

derived assuming an Haar mapping between the details
{
x

(j)

t−k2j

}
j=1,..,J, k∈Z

and {xt−n}n∈Z.

This said, all multiresolution matrices could be viewed as aggregation schemes (e.g., Abry,

Veitch, and Flandrin (1998)) and could have been employed instead.

2. The dyadic nature of the Haar matrix is consistent with details having cycles between 2j−1

and 2j periods (years, in our case). The cycles of the details are economically meaningful and

help interpretation of the results: 1 to 2 years for the first, 2 to 4 for the second, 4 to 8 for the

third, and 8 to 16 for the fourth. In essence, the first detail spans periods shorter than the

business cycle, the second and the third detail jointly cover the business cycle (its short and

its long end, respectively), and the fourth detail spans cycles longer than the business cycle.

Second, in light of our emphasis on frequencies, why not using more classical methods in the

frequency domain, like band spectrum regression (Hannan 1963a, 1963b)? Again, there are, at

least, two reasons. Once more, the first has a methodological flavor, the second has to do with the

economics of the problem.

1. This is not a paper about inference, it is a paper about modeling. We are not excluding the

possibility that a non-anticipative (i.e., adapted to time t information) filter in the frequency

domain would capture some, or all, of the effects which two-way aggregation (in the time

domain) would deliver (like a tent-shaped behavior in R2, as evidenced by Fig. 2). What

we are after, instead, is a more fundamental justification for the reported dynamics across

frequencies. To use standard econometric jargon, we are interested in a data generating

process conforming with economic logic and capable of yielding the reported aggregation
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result as a very natural by-product of its structure. Our emphasis on scale-specific shocks (as

driving shocks in the context of a component-wise model) and component-wise predictability

is designed to achieve this goal.

2. The economic literature on predictability is broad and successful. Its reliance on linear pre-

dictive systems, like that in Eq. (1) and Eq. (2), is ubiquitous. There is, therefore, much

value in casting our problem in the same framework (see Eq. (3) and Eq. (4)) as the existing

literature. Our adopted component-wise framework allows us to do so rather naturally. We do

it, in fact, with one critical conceptual difference: the introduction of the superscript j sym-

bolizing that our exploration into predictability views it as a scale-specific phenomenon with

interesting implications for the raw series, rather than as a feature of the raw series themselves,

something which has been the exclusive focus of the successful work on the subject.

5.1 Linear details

For our data, the filtered (using the Haar matrix) components are well described by a linear au-

toregressive process of order 1. We, therefore, reduce Eq. (6) to a convenient (2-parameter) linear

autoregressive structure. Not only is such a structure justified empirically, but it will also allow us

to draw a helpful, direct comparison between classical predictive systems (in which the predictor

is routinely modeled as an autoregressive process of order 1) and our proposed notion of scale-wise

predictive system (Subsection 5.2). To this extent, we write:

x
(j)

k2j+2j
= ρjx

(j)

k2j
+ ε

(j)

k2j+2j
. (8)

In essence, the details are autoregressive of order 1 in the dilated time of the scale being consid-

ered. The parameter ρj captures scale-specific persistence, the value σj represents the magnitude of

economic shocks over different scales, i.e., the magnitude of scale-specific shocks. From an inferential

standpoint, {ρj , σj} can be readily estimated once the details have been extracted. Motivated by

issues of signal processing akin to the economic issues of interest to us, Dijkerman and Mazumdar

(1994) suggests an analogous linear dynamic structure for the details.5

5One might ask whether we can impose restrictions on the parameters across scales. In recent work, Ortu, Severino,
Tamoni, and Tebaldi (2015) show that if the raw series xt follows, e.g., an AR(1) process with an autoregressive
parameter ρ, then the components of xt would also follow a (scale-wise) AR(1) process with restricted parameters

ρj = ρ2
j

. However, imposing this restriction and, therefore, assuming an AR(1) for the raw series xt would not deliver
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We note that dependence in scale time ρj may be considerably lower than dependence in calendar

time, the later being an increasing function of the scale (Appendix C, Subsection C.2.1 for a formal

proof). We also note that the assumption of uncorrelatedness of the details across scales is supported

by the ability of the extraction filters we employ to “de-correlate” the original observations (see,

e.g., Dijkerman and Mazumdar (1994) and Gençay, Selçuk, and Whitcher (2001)). Both features,

i.e., low correlation in scale time and uncorrelatedness across scales, are verified in the data.

Building on Eq. (8), we now turn to scale-wise analogues to the traditional predictive systems,

the central feature of our approach.

5.2 Scale-wise predictability

Consider a regressand y and a predictor x. Assume y and x are, as discussed above, additive

(Haar-based) collections of details modelled as in Eq. (8). Assume, also, that for some 1 ≤ j ≤ J ,

y
(j)

k2j+2j
= βjx

(j)

k2j
+ u

(j)

k2j+2j
(9)

x
(j)

k2j+2j
= ρjx

(j)

k2j
+ ε

(j)

k2j+2j
, (10)

where u
(j)

k2j+2j
is a scale-specific forecast error. Eqs. (9)-(10) define a predictive system on individual

layers of the {y, x} process to be contrasted with the traditional system written on the raw series.

It is interesting to notice that the scale-wise predictive systems are not expected to be affected

by the inferential issues that one typically associates with predictability problems. High first-order

autocorrelation of the predictor, in particular, has been put forward as a leading cause of inaccurate

inference in predictability (e.g., Stambaugh (1999), Valkanov (2003), Lewellen (2004), Campbell and

Yogo (2006), and Boudoukh, Richardson, and Whitelaw (2008)). In our framework, however, we

expect the magnitude of ρj to be smaller, the higher the scale. Consistent with this logic, at the

low frequencies over which we identify scale-wise forecastability, ρj will be estimated to be small.

There is an understanding in the predictability literature that slow-moving predictors should

drive slow-moving conditional means. This relation is, however, hidden by short-term noise. The

the tent-shape behavior found in the data - see also our discussion in Section 2. We therefore leave unrestricted the
parameters across scales. Given J = 4, as in our empirical work, this choice translates into 8 parameters (4 standard
deviations and 4 autocorrelations). We also stress that, although leaving the parameters unrestricted across scales
might lead to concerns regarding overfitting, we show in our simulations that a scale-wise predictive system relying
on just one persistent component (i.e., using only one ρj 6= 0, and zeroing all others) is an effective and parsimonious
way to capture the tent-shape behavior documented in the data.
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noise leads to the appearance of low predictability in the short-run, large long-run predictability

being the outcome of noise reduction through return aggregation. There is also an understanding

that predictors may be imperfect (Pastor and Stambaugh, 2009).

In the context of a different conceptual framework, Eqs. (9) and (10) account for both effects:

the link between slow-moving components (for a large j) and, by being defined on components rather

than on noisier (i.e., “imperfect”) raw series, the “imperfection” of predictors (and regressands).

Before turning to empirical evaluations of Eqs. (9)-(10), we discuss the implications of the

proposed data generating process for two-way aggregation.

6 The mapping between two-way aggregation and scale-wise pre-

dictive systems

It is standard in macroeconomics and finance to verify predictability by computing linear, or non-

linear, projections at the highest frequency of observation. It is also common to aggregate the re-

gressand. A recent approach proposed by Bandi and Perron (2008) aggregates both the regressand

(forward) and the regressor (backwards). The aggregate regressor is adapted to time t information

and is, therefore, non anticipative. The logic for aggregating both the regressand and the regressor

resides in the intuition according to which equilibrium implications of economic models may im-

pact highly persistent components of the variables {y, x} while being hidden by short-term noise.

Aggregation provides a natural way to extract these components, filter out the noise, and generate

a cleaner signal. Using the assumed data generating process, we now formalize this logic.

Proposition I. Assume that, for some j = j∗ , we have

y
(j∗)

k2j∗+2j∗
= βj∗x

(j∗)

k2j∗
,

x
(j∗)

k2j∗+2j∗
= ρj∗x

(j∗)

k2j∗
+ ε

(j)

k2j∗+2j∗
,

whereas
{
y

(j)

k2j
, x

(j)

k2j

}
= 0 for j 6= j∗. We map scale-time observations into calendar-time observa-

tions by using the inverse Haar transform. Then, the forward-backward regressions

yt+1,t+h = bhxt−h+1,t + εt+1,t+h
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reach the maximum R2 of 1 over the horizon h = 2j
∗

and, at that horizon, bh = βj∗ .

Proof. See Appendix C.2.2.

For simplicity, we dispense with the forecasting shocks ut in Proposition I. Predictability applies

to a specific j∗ detail. All other details are set equal to zero.

Proposition I shows that predictability on the details implies predictability upon suitable aggre-

gation of both the regressand and the regressor. More explicitly, economic relations which apply

to specific, low-frequency components will be revealed by two-way averaging. Adding short-term

or long-term shocks in the form of uncorrelated details
{
y

(j)

k2j
, x

(j)

k2j

}
, for j < j∗ or for j > j∗, or

forecasting errors different from zero, would solely lead to a blurring of the resulting relation upon

two-way aggregation. We add uncorrelated details
{
y

(j)

k2j
, x

(j)

k2j

}
for j 6= j∗ in the simulations in

Section 10.

The Proposition also makes explicit the fact that the optimal amount of averaging should be

conducted for time lengths corresponding to the scale over which predictability applies. More specif-

ically, under the above assumptions, if predictability applies to a specific detail with fluctuations

between 2j
∗−1 and 2j

∗
periods, an R2 of 1 would be achieved for a level of (forward/backward)

aggregation corresponding to 2j
∗

periods. Before and after, the R2s should display a tent-like be-

havior. At the same horizon, the theoretical slope (b2j∗ ) of the forward/backward regressions would

coincide with the theoretical slope (β2j∗ ) of the detail-wise regressions. These are implications of

our approach which will be verified in the data.

Importantly, the Proposition has implications for all frequencies, not only for the very long

run. The conclusions we draw will, therefore, not depend solely on regions of the data space - at

very low frequencies - with inevitably high statistical uncertainty. We will show that all frequencies

provide support for the suggested approach, thereby reducing classical concerns in the literature

about statistical significance over long horizons.

Next, we broaden the scope of classical predictability relations in the literature. We turn to

regressions on the extracted details and illustrate the consistency of their findings with those ob-

tained from two-way aggregation. This consistency, which is an implication of Proposition I, is

further confirmed by simulation.

From an applied standpoint, one could proceed in the opposite way: detect predictability on the

scales and then exploit predictability on the scales by suitably aggregating regressand and regressors,
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by way of forward/backward aggregation. The latter method is a way in which one could exploit

the presence of a scale-specific predictability to perform return predictability and, among other

applications, asset allocation over suitable horizons.

7 Predictability on the components

We report predictive regressions on the components. We preserve the same structure as for Section

4 and begin with the component-wise relation between equity returns and market variance.

7.1 Equity returns on market variance

The filtered details are shown in Figs. 3 and 4. For an explicit interpretation of the j-th scale in

terms of yearly time spans, we refer to Table 1.

[Insert Table 1 about here]
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Figure 3: Detail decomposition for market returns: calendar-time observations in solid blue, scale-
time observations in red diamonds.
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Years
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Scale j=1, [1, 2) years

Years

1940 1950 1960 1970 1980 1990 2000 2010

-0.05

0

0.05

0.1
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Scale j=4, [8, 16) years

Figure 4: Detail decomposition for market realized variance: calendar-time observations in blue,
scale-time observations in red diamonds.

The hypothesis of uncorrelatedness among detail components with different degrees of persis-

tence is not in contradiction with data. Table 2 presents pair-wise correlations between the indi-

vidual details for both series. Virtually all correlations are small and very statistically insignificant.

Not surprisingly, the largest one (0.33) corresponds to the adjacent pair of variance scales j = 3

and j = 4.6

[Insert Table 2 about here]

We run detail-wise predictive regressions as in Eqs. (9)-(10). The results are reported in Table

6It is worth emphasizing that these pair-wise correlations are obtained by using overlapping, calendar-time, or
redundant data on the details rather than the non-overlapping, scale-time or decimated counterparts described in
Subsection A.1. This is, of course, due to the need of having the same number of observations for each scale. Hence,
even though they are small, we expect these correlations to overstate dependence.

There could also be leakage between adjacent time scales. It is possible to reduce the impact of leakage by replacing
the Haar filter with alternative filters with superior robustness properties (the Daubechies filter is one example). The
investigation of which filter is the most suitable for the purpose of studying predictability on the scales is beyond the
scopes of the present paper. As pointed out earlier, also, the use of the Haar filter is particularly helpful to relate
scale-wise predictability to aggregation, a core aspect of our treatment, and yield components with cycles whose length
is easily interpretable.
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3-Panel B.7 The strongest predictability is for j = 4, which corresponds to economic fluctuations

between 8 and 16 years. For j = 4, the R2 of the detail-wise predictive regression is a considerable

58.2%.

An important implication of Proposition I is that, should predictability apply to a specific detail

with fluctuations between 2j−1 and 2j periods, the maximum R2 would be achieved for a level of

(forward/backward) aggregation corresponding to 2j periods. Before and after, the R2 is expected

to display a tent-shaped behavior. In our case, 2j = 16 years. Consistent with theory, the R2 values

upon two-way aggregation reach their peak (around 55%) between 14 and 16 years (see Section 4).

Remarkably, the structure of the R2s, before and after, is roughly tent-shaped (see Fig. 2).

The study of low frequency relations is made difficult by the limited availability of observations

over certain, long horizons. We do not believe that this difficulty detracts from the importance

of inference at low frequency, provided such inference is conducted carefully. Importantly for the

purposes of this paper, however, here we do not solely focus on low-frequency dynamics. A crucial

implication of our conceptual framework is, in fact, the existence of a tent-shaped behavior in R2

values as a by-product of scale-wise predictability. The reported tent-shaped behavior requires

the dynamics at all frequencies to cooperate effectively, i.e., even at those high frequencies for

which data availability would not be put forward as a statistical concern. In sum, we are not just

drawing conclusions from frequencies associated with high statistical uncertainty, we are relying on

all frequencies. We now turn to consumption variance.

7.2 Equity returns on consumption variance

We note that the “de-correlation” property of the details strongly applies to consumption variance

(see Table 2). In agreement with theory, running detail-wise predictive regressions leads again to

maximum predictability (and an R2 of 61.62%) associated with low-frequency cycles between 8 and

16 years, i.e., j = 4 (Table 4-Panel B).

7.3 Equity returns on (squared) EPU

Results are provided in Table 5. They are analogous to the corresponding findings for market and

consumption variance. We will not comment on them further.

7Given a scale j, we work with an effective sample size of
[
T/2j

]
observations, where [.] denotes the smallest integer

near T/2j . In this empirical analysis, we consider a sample spanning the period 1930 to 2014 and J = 4.
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7.4 An interpretation

Standard economic theory views the presence of a market risk-return trade-off as compensation

for variance risk. Given this logic, for past variance to affect future expected returns, higher past

variance should predict higher future variance. Importantly, this is not the case when simply

aggregating the raw data over the long run (see On-Line Appendix “Predicting long-run variance”).

However, at the scale over which we report predictability (i.e., the 8 to 16 year scale), we find a

positive dependence between past values of the variance detail and future values of the same detail.

In other words, consistent with an autoregressive (of order 1) specification of the details, the j = 4

variance detail has a positive autocorrelation with uncorrelated residuals. The R2 of the detail-wise

autoregression on market variance is a rather substantial 43.28% with a positive slope of 0.12. As

explained earlier, it is unsurprising to find a low scale-wise (for j = 4) autocorrelation. While the

autocorrelation value appears small, we recall that it is a measure of correlation on the dilated time

of a scale designed to capture economic fluctuations with 8-to-16 year cycles. As shown in Appendix

C.2.1, the corresponding autocorrelation in calendar-time would naturally be higher. Similarly, for

j = 4, a detail-wise autoregression of future consumption variance on past consumption variance

yields a positive (and larger than in the market variance case) autocorrelation of 0.24 and an R2

value of about 58.8%. Again, analogous findings apply to the (squared) EPU’s details which, also,

behave as an AR(1), with an estimated autocorrelation equal to 0.53, for j = 4.

Importantly for our purposes, the documented low dependence between past and future un-

certainty dynamics at frequencies over which predictability applies differentiates our inferential

problem from classical assessments of predictability. It is typically the case that high persistence of

the predictor makes classical inference incorrect (e.g., Valkanov (2003)). This issue does not arise

in our framework.

In essence, we find that, at scale j = 4, a very slow-moving component of the uncertainty

process predicts itself as well as the corresponding component in future excess market returns. Said

differently, higher past values of the uncertainty detail appear to predict higher future values of

the same uncertainty detail and, consequently, higher future values of the corresponding detail in

excess market returns, as required by conventional logic behind compensations for uncertainty (i.e.,

variance) risk. While this logic applies to a specific level of resolution in our framework, it translates

- upon forward/backward aggregation - into predictability for long-run returns as shown formally
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in Section 6 and in the data.

8 The relation between uncertainty measures

The observations in the previous section raise an important issue having to do with the relation

between uncertainty in financial markets and macroeconomic uncertainty, as captured, e.g., by

consumption variance. Barring small differences, when exploring suitable scales, both uncertainty

notions have predictive power for excess market returns on the details. Similarly, they both have

predictive power for long-run returns upon adaptive (two-way) aggregation.

While this result appears theoretically justifiable since there should be, in equilibrium, a close re-

lation between consumption variance and market variance (see, e.g., Eq. (12) in Bollerslev, Tauchen,

and Zhou, 2009, for a recent treatment), the empirical relation between these two notions of un-

certainty is period-dependent. In an influential paper on the subject, Schwert (1989) finds a rather

limited link between macroeconomic uncertainty and financial market variance.8 This work has

spurred a number of contributions which, also, have provided evidence that the relation between

variance in financial markets and a more “fundamental” notion of variance can be weak in US data

(see, e.g., the discussion in Diebold and Yilmaz, 2008).

We conjecture that, being the result of equilibrium conditions, the presumed relation between

macroeconomic variance and financial market variance may be confounded in the raw data, over

certain periods. Using our jargon, the relation may, however, hold true for suitable lower frequency

details of the variance processes.

Figs. 5 and 6 provide graphical representations supporting this logic. Fig. 5 relates market

variance to the variance of consumption growth (and EPU) using yearly data, starting in 1930.

Figure 6 looks at the link between the details of the three series with scale j = 4, i.e., the details

capturing economic fluctuations between 8 and 16 years.

The relation between the raw series is significant (but with correlations which are - in all cases -

lower than 50%) only when including the 1930s and the great depression, due to a couple of drastic

spikes. These correlations effectively become 0 since 1945 (leaving market variance and EPU aside,

which continue to co-move somewhat). The details, instead, are very co-moving over the post-1945

8Schwert (1989) uses monthly data from 1857 to 1987.
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period. Their estimated correlations since 19459 are around 60%/70%.

1930 1940 1950 1960 1970 1980 1990 2000 2010
-2

-1

0

1

2

3

4

5

6
Consumption Variance

Market Variance

Economic Policy Uncertainty

Figure 5: The figure displays the raw yearly series of market variance, consumption variance and
(squared) EPU for the full sample. For ease of comparison, all variables are standardized.

A large, successful literature has examined the validity of classical risk-return relations by refin-

ing the way in which conditional means and conditional variances are identified (see, e.g., Harvey

(2001), Brandt and Kang (2004), and Ludvigson and Ng (2007)). Similarly, a large, equally suc-

cessful literature has studied the properties of financial market variance and, in some instances,

looked for significant associations, dictated by theory, between macroeconomic uncertainty and un-

certainty in financial markets. This paper addresses both issues by taking a unified view of the

problem, one which emphasizes the role played by low-frequency shocks. We argue that equilibrium

relations, the one between future excess market returns and past consumption/market variance or

the one between contemporaneous market variance and contemporaneous consumption variance,

may be satisfied at the level of individual layers of the raw series while being drastically clouded by

high-frequency variation in the data.

9Since the filter uses the first 15 years to compute these details, only the correlations since 1945 can be calculated.
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Figure 6: The figure displays the details of the three series with scale j = 4. For ease of comparison,
all variables are standardized.

9 Hump-shaped patterns and classical predictive systems: simu-

lations

How likely are classical predictive systems to generate the tent-shaped dynamics detected in the

data? We run forward/backward regressions using simulations from a traditional predictive model

for excess market returns and consumption volatility, namely:

rt+1 = βvt + ut+1,

vt+1 = ρvt + εt+1.

The parameters are estimated from data: β = 2.0536, ρ = 0.688, σu = 0.1858, σε = 0.008, and ρu,ε

= -0.142.

The mean and the median of the slope estimates decline monotonically over time (Table 7-Panel

A). This finding is consistent with the observations that, in theory, forward/backward aggregation
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should lead to decreasing slopes (when |ρ| < 1) in the presence of classical predictive systems

(Section 2). It is, however, inconsistent with data. In the data, we find monotonically increasing

slopes between 6 and 12 years and monotonically decreasing slopes between 16 and 20 years. Instead,

the percentages of simulations delivering β estimates which are monotonically increasing between 6

and 12 years, monotonically decreasing between 16 and 20 years and hump-shaped (monotonically

increasing between 6 and 12 and monotonically decreasing between 16 and 20 years) are 14.64%,

35.21%, and only 6.14%, respectively.

The coefficients of determination are monotonically increasing over time, in terms of both their

mean and median across simulations. If we employ the same metrics used for the slope estimates

(increasingly monotonic between 6 and 12 years, decreasingly monotonic between 16 and 20 years,

and hump-shaped), we find percentages equal to 16.81%, 18.29% and 6.54%, respectively. Yet,

similarly to what is found for the slope estimates, these shapes are strongly in the data.

Sheer magnitude of the R2 is an additional, important metric. The reported maximum R2

value from data is sizable and around 55%. The percentage of simulations yielding hump-shaped

R2 values as well as R2 magnitudes larger than 50% is only 3.05%. The percentage of simulations

delivering both hump-shaped R2 values and hump-shaped slope values, as well as R2s in excess of

50%, is instead 1.15%.

In essence, it is hard to argue that the empirical findings yielded by forward/backward aggre-

gation can be explained by a traditional predictive system.

[Insert Table 7 about here]

In the spirit of Boudoukh, Richardson, and Whitelaw (2008), we now set β = 0 and ask whether

absence of predictability can lead to the effects in the data. When setting β = 0, the estimated

values from data are ρ = 0.688, σu = 0.1872, σε = 0.008, and ρu,ε = -0.142.

Should the data generating process not allow for predictability, the estimated slopes would be

slightly increasing across the board. This is akin to a typical spurious regression problem: the gen-

eration of unit root behavior by virtue of aggregation leads to the appearance of dependence. Such

appearance is also reflected in increasing mean and median R2s across simulations. This increasing

behavior is pervasive across frequencies and, importantly, inconsistent with the marked tent-shaped

structures reported in the data. We find, for instance, that the percentages of hump-shaped slopes

and R2s (again, monotonically increasing between 6 and 12 years and monotonically decreasing
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between 16 and 20 years) are 7.83% and 7.56%, respectively. When including the requirement of

an R2 larger than 50%, the latter percentage drops to 3.41%. Should we also add the requirement

that the drop in the R2 value between the 16-year horizon and the 20-year horizon is larger than

30%, something which is consistent with data, the percentage would decrease further to 1.40%.

[Insert Table 6 about here]

Additional metrics are reported in Table 6. All of them provide a consistent picture. In agreement

with the arguments in Boudoukh, Richardson, and Whitelaw (2008), lack of predictability in the

usual sense (β=0 in the system in Eqs. (1)-(2)) could generate mild upward trending behavior in

the slopes and coefficients of determination. It will however find it difficult to replicate both the

reported humps and their magnitudes at the peaks. We now turn to simulations under a component

model.

10 Hump-shaped patterns and scale-wise predictive systems: sim-

ulations

In this section we confirm, once more by simulation, that scale-specific predictability translates

into predictability upon two-way aggregation. We do so by carefully calibrating the simulation

parameters to the data. Supporting the implications of Proposition I, we show that hump-shaped

patterns are readily generated. We also show that, if predictability on the components applies,

contemporaneous (i.e., forward/forward) aggregation leads to insignificant outcomes. Similarly, if

no predictability on the components applies, forward/backward aggregation leads to insignificant

outcomes.

We begin by postulating processes for the (possibly related) details of the consumption variance

and return series:

r
(j)

k2j+2j
= βjv

(j)

k2j
(11)

v
(j)

k2j+2j
= ρjv

(j)

k2j
+ ε

(j)

k2j+2j

27



for j = j∗ and

r
(j)

k2j+2j
= u

(j)

k2j+2j

v
(j)

k2j+2j
= ε

(j)

k2j+2j

for j 6= j∗, where k is defined as above and j = 1, . . . , J = 4. As in the data, the scales are defined

at the annual level. The shocks ε
(j)
t and u

(j)
t satisfy corr(u

(j)
t , ε

(j)
t ) = 0 ∀t, j.

The model implies a predictive system on the scale j∗ and unrelated details for all other scales.

In other words, predictability only occurs at the level of the j∗-th detail. Consistent with data, we

set j∗ = 4, i.e., only the fourth component of the return and variance process correlate with each

other, their relation being based on the previously-reported betas in Table 4 (we set βj equal to 2.8

for j = 4 and zero otherwise). Moreover u
(j)

k2j
is N(0, σ

(j)
u ), where σ

(j)
u is chosen so as to match the

variance of the component r
(j)

k2j
at scale j.10

The fourth component of the market variance follows an autoregressive process of order one in

scale time, with a scale-specific autoregressive parameter ρj calibrated to the data (we set ρj equal

to 0.2 for j = 4 and zero otherwise).11 All other variance components are assumed to be white noise

shocks ε
(j)

k2j
∼ N(0, σ

(j)
ε ) with a variance chosen so as to match the variance of the component v

(j)

k2j

at scale j.

We note that the only conceptual difference between this simulation set-up and the assump-

tions in Proposition I is the addition of noise
{
u

(j)

k2j+2j
, ε

(j)

k2j+2j

}
for scales j 6= j∗. As discussed,

uncorrelated shocks will only lead to a blurring of the relation.

The data generating process is again formulated for observations defined in scale time. We

therefore simulate the process at scale j every 2j steps. To obtain the (calendar-time observations

of) aggregate return and variance series from scale-time details, we aggregate the simulated details

via the inverse Haar matrix (see Appendix A.1 for details). Appendix C, Subsection C.1 illustrates

within a tractable example the simulation procedure in the time-scale domain and the reconstruction

10Ortu, Tamoni, and Tebaldi (2013) show that the variance of a stationary time series equals the sum of the

variances of its decimated components. For the return series, the variance of the components is V ar(r
(1)

k21
) = 0.02,

V ar(r
(2)

k22
) = 0.012, V ar(r

(3)

k23
) = 0.005 and V ar(r

(4)

k24
) = 0.002. Indeed,

√∑
j V ar(r

(j)

k2j
) = 19.75%, which equals the

stock market volatility over our sample.
11The small autoregressive parameter in scale time is enough to generate a persistent process in calendar time. The

autocorrelation of our simulated variance at lags 1, 2 and 3 is ACF(1)=0.71, ACF(2)=0.50, and ACF(3)=0.33; in the
data, the first 3 lags of the sample ACF for consumption variance are 0.73, 0.48, and 0.33 respectively.
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steps in the time domain.

In agreement with the discussion in Section 6, we now show that a predictive relation local-

ized around the j∗-th scale will produce a pattern of R2s which has a peak for aggregation levels

corresponding to the horizon 2j
∗
.

10.1 Running two-way regressions on data from a component model

Table 8-Panel A shows the results obtained by running the regression in Eq. (5) on simulated

data generated from Eq. (11). We compare these results to those in Table 9, where no scale-wise

predictability is assumed.12 The tables report standard errors rather than t-statistics since, in the

case of overlapping observations, the rate at which the standard errors grow may be informative.

When imposing the relation at scale j∗ = 4, i.e., for a time span of 8 to 16 years (c.f., Table 1),

we reach a peak in the R2s of the two-way regressions exactly at 16 years. The 16-year R2 is 53.65%

and is very comparable to its empirical counterpart from Table 4. The 16-year R2 is also about 25

times as large as the one obtained in the case of no-predictability at the same horizon (see Table 9).

We notice that the slope estimates increase, reaching their maximum value of 4.48 at 16 years, a

value identical to the the slope’s estimated value on data of 4.48 (Table 4). After the 16-year mark,

the slope estimates decrease almost monotonically. The coefficients are strongly significant between

12 and 18 years. They are insignificant before and after those horizons. Hence, the simulations

generate an hump-shaped pattern in the estimated slopes, t-statistics, and R2 which derives solely

from imposing scale-specific predictability at a frequency lower than business-cycle frequencies (c.f.,

Appendix C, Subsection C.2.2).

[Insert Tables 8 and 9 about here]

Returning to the distribution of the slope estimates and the R2s, the percentages of βs (R2s)

which are monotonically increasing between 6 and 12 years and monotonically decreasing between

16 and 20 years are 52.2% (39.2%) and 66.8% (63.4%), respectively. The percentage of βs (R2s)

which satisfy both condition is 37.2% (31.2%). Hence, more than 1 in 3 simulated paths deliver

12Under the null of no scale-wise predictability we set β4 equal to zero. In other words under the null we have
r
(j)

k2j+2j
= u

(j)

k2j+2j
for all j, whereas under the alternative we had r

(j)

k2j+2j
= βjv

2(j)

k2j
for j = j∗. Once again the

variance of the shock is chosen so as to match the variance of the component r
(j)

k2j
at scale j. All the other calibrated

parameters are untouched so that the first 2 lags of the ACF for the simulated consumption variance are the same as
before.
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what we observe in the data. Since the corresponding numbers in the case of a classical predictive

system are around 6.5%, this metric suggests that a component model appears to have a probability

5 times higher than a traditional predictive model to feature the effects observed in the data.

Should we strengthen the metric a bit and consider now the percentage of R2 values which are

hump-shaped, larger than 50% and such that the drop in R2 between the 16-year horizon and the 20-

year horizon is larger than 30%, we would find that about 19% of the sample paths would reproduce

exactly the pattern in the data. This observation translates into a likelihood of observing paths

with those characteristics which is more than 13 times larger than the corresponding likelihood in

the case of a traditional predictive model. Additional metrics, providing analogous information, are

reported in Table 8.

As emphasized earlier, if aggregation were to lead, somewhat mechanically, to statistically signif-

icant, larger slopes and higher R2 values by virtue of the creation of stochastic trends, hump-shaped

behaviors would be unlikely and contemporaneous (forward/forward) aggregation would also lead

to spurious predictability. We have shown, instead, that hump-shaped structures may naturally

arise from predictability at the corresponding scale. We now turn to forward/forward aggregation.

Again, we simulate under j∗ = 4 (in Table 8-Panel B). When both the regressor and the regressand

are aggregated over the same time interval, no statistical significant predictability is detected. Ap-

pendix C-C.2.3 provides a theoretical justification. The On-line Appendix (see Section “Predicting

long-run variance”) contains additional simulations and diagnostics.

These effects are similar to what one would obtain if, instead of aggregating forward/forward,

one where to aggregate forward/backward while simulating from a component model like Eqs. (9)-

(10) above under the assumption of absence of scale-specific predictabilty, i.e., βj = 0. Absence of

predictability would lead to statistically insignificant slopes numerically very close to zero for all

horizons. The resulting R2 values would also be very small and rather far from magnitudes seen in

the data.

In sum, we view these simulations as giving an important role to predictability on the components

and confirming the ability of suitable (forward/backward) aggregation to detect it.

11 Past uncertainty within Campbell and Shiller’s framework

The classical Campbell and Shiller’s log-linearization implies the following
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dt − pt = rt+1 −∆dt+1 − k + ρ (dt+1 − pt+1) , (12)

where dt is log-dividend, pt is log-price, k = log (1 + exp (E [p− d]))− ρE [p− d] and ρ = eE[p−d]

1+eE[p−d] .

Iterating Eq. (12) forward, and taking conditional expectations, one obtains

dt − pt = const. + Et

 ∞∑
j=1

ρj−1 (rt+j −∆dt+j)

 . (13)

Eq. (13) is derived by ruling out the explosive behavior of stock prices, i.e., limj→∞ ρ
j (dt+j − pt+j) =

0. Eq. (12), and its forward iteration, are identities. They hold ex-post as well as in expectation.13

In fact,

dt − pt =
∞∑
j=1

ρj−1 (rt+j −∆dt+j)

= E

 ∞∑
j=1

ρj−1 (rt+j −∆dt+j) | dt − pt

 .
In words, the quantity dt − pt is, somewhat mechanically, informative about investor’s expec-

tations regarding either long-run dividend growth or long-run returns, or both. This observation

justifies the attention the price-to-dividend ratio has received (see, e.g., Cochrane (2008)).

When taking the identity to data, the infinite sums ought to be truncated. We use the notation

rkt =

k∑
j=1

ρj−1rt+j , ∆dkt =

k∑
j=1

ρj−1∆dt+j , (d/pt)
k = ρk (dt+k − pt+k) , (14)

where rkt , ∆dkt , and (d/pt)
k define k-period (discounted) log returns, k-period (discounted) log

dividend growth and the k-step ahead (discounted) log dividend-to-price ratio. Write rkt = r∞t ,

∆dkt = ∆d∞t , and (d/pt)
k → 0 (ruling out bubbles) when k →∞. Interpret r∞t and ∆d∞t as notions

of long-run (weighted, by ρ) returns and long-run (weighted) dividend growth.

13We ignore the constant, and interpret all variables from now on as being de-meaned. Recent work by Lettau and
Nieuwerburgh (2008) and Favero, Gozluklu, and Tamoni (2011) reports evidence for structural shifts in the long-run
mean of the dividend-price ratio and advocates the use of a de-trended dividend-price series as the return predictor.
Although in what follows we assume that the long-term mean is constant, our results would be even stronger had
we used a de-trended dividend price ratio. This is so because our orthogonalization procedure attributes part of the
movement in past uncertainty to low-frequency changes in the dividend-price ratio, these changes being potentially
related to a time-varying long-run mean. Absent these changes, the additional contribution of past uncertainty to
return and dividend predictability based solely on dividend-price ratio would increase.
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When truncating, i.e., for a k small enough, the bubble term may be empirically (and concep-

tually) important. Iterating Eq. (12) forward, write:

dt − pt =

k∑
j=1

ρj−1 (rt+j −∆dt+j) + ρk (dt+k − pt+k) , (15)

=rkt −∆dkt + (d/pt)
k . (16)

This expression readily implies that

cov(dt − pt, dt − pt) =cov(dt − pt, rkt −∆dkt + d/pkt )

=cov(dt − pt, rkt )− cov(dt − pt,∆dkt ) + cov(dt − pt, d/pkt ).

In terms of βs, the restriction on the covariances becomes

1 = βkr,dp − βk∆d,dp + βkd/p,dp, (17)

where the three slopes derive from the following univariate regressions:

rkt = βkr,dp(dt − pt) + εr,t+k,

∆dkt = βk∆d,dp(dt − pt) + εd,t+k,

d/pkt = βkd/p,dp(dt − pt) + εd/p,t+k.

In the long run (i.e., for k → ∞), the third equation can be ignored. As in Cochrane (2008), the

restriction becomes

1 = β∞r,dp − β∞∆d,dp. (18)

The dividend-to-price ratio should, therefore, predict either long-run returns or long-run div-

idend growth, or both. Because β∞r,dp and βk∆d,dp are found to be economically close to 1 and 0,

Cochrane (2008) emphasizes that it predicts the former, rather than the latter.
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11.1 Other (than dividend-to-price) forecasting variables

Eq. (15) and its long-run implications continue to hold. Hence, if a variable xt, orthogonal to the

dividend-to-price ratio, were to forecast r∞t in addition to dt−pt, the same variable would also have

to forecast dividend growth ∆d∞t . These forecasts would “offset” each other so that, given dt − pt,

the forecast of the entire right hand side of the present value identity is not altered. Write

cov(xt, dt − pt) =cov(xt, r
k
t −∆dkt + (d/pt)

k)

=cov(xt, r
k
t )− cov(xt,∆d

k
t ) + cov

(
xt, (d/pt)

k
)
,

where cov(xt, dt − pt) = 0, due to the assumed orthogonality of xt and dt − pt. In terms of βs, the

restriction on the covariances becomes:

0 = βkr,x − βk∆d,x + βkd/p,x, (19)

where the three slopes derive from the following univariate regressions:

rkt = βkr,xxt + εr,t+k,

∆dkt = βk∆d,xxt + εd,t+k,

d/pkt = βkd/p,xxt + εd/p,t+k.

In the long run (k →∞), the third equation can be ignored and the restriction becomes

β∞r,x = β∞∆d,x. (20)

Importantly, this restriction is completely mechanical and is solely a by-product of (i) Campbell

and Shiller’s identity and (2) the orthogonality of the predictor. In other words, for a large enough

k any orthogonal variable would satisfy it, irrespective of its predictive ability for long-run returns

and dividend growth.

This said, any orthogonal variable which predicts long-run returns (resp. long-run dividend

growth) in a statistically significant manner should also predict long-run dividend growth (resp.
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long-run returns). Whether, econometrically, one obtains more signal from either a regression of

long-run returns on the assumed predictor or from a regression of long-run dividend growth depends

on testable restrictions. This is easy to see. Write

r∞t =β∞r,xxt + εr,t+∞. (21)

Eq. (21) and Eq. (16), with k →∞, imply that

∆d∞t = β∞r,xxt + εr,t+∞ − (dt − pt).

Hence, we have E[∆d∞t |xt] = E[r∞t |xt] = β∞r,xxt since E[dt−pt|xt] = E[dt−pt] = 0. The first equality

derives from the orthogonality of dt − pt and xt and the second equality derives from the fact that

dt − pt is de-meaned. For a large enough k, the true beta can be estimated consistently both from

long-run returns and from long-run dividend growth. Both regressions are correctly specified.

Importantly, however, the relative signal of a regression of long-run dividend growth on xt or

long-run returns on xt depends on the relation between var(εr,t+∞ − (dt − pt)) and var(εr,t+∞).

Immediately, the signal from the former regression is stronger than that from the latter when

ρεr,pd ≥
σpd
2σεr

,

where ρεr,pd is the correlation between shocks to long-run returns and dt − pt, σεr is the standard

deviation of shocks to long-run returns, and σpd is the standard deviation of the price-to-dividend

ratio.

Now, notice that εr,t+∞ is positively correlated with dt − pt since the latter has predictive

ability for long-run returns and is orthogonal to the new variable xt. In fact, by orthogonality,

the correlation ρεr,pd is proportional to β∞r,dp from the univariate regression of long-run returns (or,

equivalently, the errors εr,t+∞) onto the dividend-to-price ratio:

εr,t+∞ = β∞r,dp(dt − pt) + ε∗r,t+∞.

Hence,
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ρεr,pd = β∞r,dp
σpd
σεr

,

which implies

β∞r,dp ≥ 1/2.

In other words, should the slope associated with the classical long-run predictive regression on the

dividend-to-price ratio be larger than 1/2, an indirect long-run dividend-growth regression provides

more signal to detect the predictability of alternative predictors than a direct long-run return

regression. This is like saying that, should the dividend-to-price ratio display more predictability,

economically, for long-run returns than for long-run dividend growth (β∞r,dp ≥ 1/2), then long-run

dividend growth should be, statistically, more informative about the predictive ability of an orthogonal

regressor than long-run returns. Since the condition β∞r,dp ≥ 1/2 is easily satisfied in the data, we

expect the standard errors of the slope estimates derived from long-run dividend growth regressions

on xt to be smaller. Indirect long-run dividend growth regressions are, therefore, more powerful to

detect the predictability of orthogonal regressor(s) than direct long-run return regressions.

More can be said. Should one agree with Cochrane’s view that β∞r,dp = 1, the signal about

additional predictability from a regression of long-run dividend growth onto the orthogonal predictor

would be as large as the signal about additional predictability from a full model in which long-run

returns are regressed onto both the orthogonal regressor and the dividend-to-price ratio. This is

again easy to see.

Using the same notation as before, the full specification would read:

r∞t =β∞r,xxt + β∞r,dp(dt − pt) + ε∗r,t+∞︸ ︷︷ ︸
εr,t+∞

.

Given the definition of εr,t+∞ with β∞r,dp = 1, the long-run dividend growth regression would now

be:

∆d∞t =β∞r,xxt + εr,t+∞ − (pt − dt)

=β∞r,xxt + ε∗r,t+∞.
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By the orthogonality of dt − pt and xt and the fact that the two regressions have the same

error terms, running a long-run dividend growth regression on the assumed predictor yields the

same standard error (for the quantity of interest, β̂∞r,x) as working with the completely-specified,

full model. In sum:

• An orthogonal variable xt which helps dt − pt forecast long-run returns should also forecast

long-run dividend growth (and, for a finite horizon, future dividend to price). This result is

rather explicit in the discussion in Cochrane (2008).

• For a long enough horizon k, the prediction slopes should cancel each other out exactly, i.e.,

βr∞t ,xt = β∆d∞t ,xt
. This result is mechanical. Any orthogonal (to the dividend-to-price ratio)

variable would lead to it, irrespective of its predictive ability, for k large enough.

• While uninformative about actual predictability, the “time of closure” of the estimated slopes,

k∗ say, does provide information about the horizon k∗ over which “the long run” begins to

show up in the data.

• How to then assess the long-run predictive ability of an orthogonal variable at this specific

horizon k∗? In light of the theoretical equality of their slopes, both a direct regression of long-

run returns on the variable and an indirect regression of long-run dividend growth on the

variable could be run. Statistical significance of the corresponding slopes should, of course, be

evaluated.

• This said, because the restriction β∞r,dp ≥ 1/2 is satisfied in the data, regressions of long-run

dividend growth on the presumed predictor have more signal.

• Thus, strong statistical significance as derived from long-run dividend growth regressions may

be viewed as a necessary (and sufficient) condition for the long-run predictive ability of an

orthogonal (to the dividend-to-price ratio) regressor.

In what follows, we identify the horizon k∗ over which the data contains information about long-

run dynamics. At this horizon k∗, we report substantial statistical significance associated to the

predictive ability of past uncertainty for both future long-run returns and future long-run dividend

growth. The former represents a direct test. The latter constitutes an indirect, albeit more powerful,

test.
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The above discussion hinges on implications drawn from a standard log-linearization. Below,

we evaluate those implications as well as predictability for long-run returns and long-run dividend

growth without continuous compounding. Modifying the compounding frequency does not affect

matters.

12 Past uncertainty, future returns and dividend growth

We showed that components of the uncertainty process with cycles between 8 and 16 years predict

themselves, as well as low-frequency return components, 16 years into the future. A theoretical

implication of this scale-specific predictability is that backward aggregated variance over 16 years

has maximum predictive ability for future returns when reaching the 16-year horizon.

Consistent with the results in Section 7, in order to extract a slow-moving signal about future

conditional mean returns, we use past uncertainty aggregated over a 16-year horizon. We make use of

Campbell and Shiller’s identity (and its implications, as discussed above) as the relevant conceptual

framework. For reasons of interpretation and technical clarity (again, discussed above), we now

focus on the strictly orthogonal (to the dividend-to-price ratio) component of past uncertainty. It

is, then, within the Campbell and Shiller’s framework that we justify the strong long-run cash-flow

predictability associated with this orthogonal component as the flip side of the same component’s

predictive ability for long-run discount rates. As is the case for other quantities, we work with

logarithmic transformations of uncertainty measures. Hence, by Proposition I, the regressor (i.e.,

past uncertainty) should be viewed as a low-pass filter for a slow-moving component in logarithmic

uncertainty. We discuss robustness to transformations in what follows.

12.1 (Log) market variance

Table 11 contains univariate regressions of k-period (discounted, by ρ) log returns, rkt , k-period

(discounted, by ρ) log dividend growth, ∆dkt , and k-period ahead (discounted, by ρ) log dividend-

to-price ratio, d/pkt , onto the dividend-to-price ratio and past long-run (log) market variance. The

notation was defined in Eq. (14). The value of ρ is estimated to be equal to 0.9677.14,15

14ρ = expE(p−d)

1+expE(p−d) , where E(p− d) is estimated using the full sample 1930-2014. We also run the regressions when

ρ is estimated using the effective sample 1945-2014. Results (available upon request) do not change.
15CRSP computes annual return series under the stock market reinvestment assumption. This approach is problem-

atic because it imparts some of the properties of returns to cash flows, see Chen (2009) and Koijen and Nieuwerburgh
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In theory, the long run yields clean implications. We use an empirical definition of “long run” as

the horizon k∗ over which we witness “closure” or “convergence” of the slope estimates associated

with (i) a regression of rkt on variance and (ii) a regression of ∆dkt on variance. When “closure” is

not achieved, the difference between the two slopes should (mechanically) be the slope associated

with a regression of d/pkt on variance.

Table 11 reports two panels. Panel A refers to an horizon of k=16 years, Panel B refers to

an horizon of k=18 years. At k=16, there is still a slight mismatch between estimated slopes on

cash flow regressions and estimated slopes on discount rate regressions. The mismatch is erased

at 18 years. While at this horizon there is still some variation left in discounted k-period ahead

dividend-to-price ratios, such variation is statistically and economically insignificant.

Should k=18 be a true “long-run” proxy, the discussion in Section 11 implies that the 18-year

dividend-growth regression will provide a stronger signal about predictability, or lack thereof, then

the 18-year return regression. The latter delivers an estimated slope of 0.03 with an associated

t-statistic of 2.01 and an R2 value of 13.73%. The former, instead, yields the same estimated slope

but with a t-statistic of 4.96 and an R2 value of 58.21%. As emphasized, it is the predictive ability of

the dividend-to-price ratio which enhances the signal-to-noise ratio of dividend growth regressions

on predictors. One may, therefore, view the considerably smaller standard errors from cash flow

regressions (relative to those from discount rate regressions) as an indirect test of the predictive

ability of the dividend-to-price ratio. Leaving relative magnitude of the standard errors aside,

and focusing on their absolute magnitude instead, statistical significance from cash flow regressions

is critical for long-run predictability, i.e., more so than statistical significance from discount rate

regressions.

We now turn to returns and dividend growth without continuous compounding. We do not

expect the implications derived earlier from log-linearization to hold but, of course, continue to be

interested in predictability for the long run (and at higher frequencies). Both the dividend-to-price

ratio (Panel A, Table 10) and the orthogonal component of variance (Panel B, Table 10) have

considerable predictive ability for returns, at all reported frequencies. The joint predictions (Panel

(2011). Thus, we construct the annual return series from monthly data under the assumption of dividend reinvestment
at a zero-rate. It is also interesting to note that the reinvestment rate of monthly dividends leads to contamination
mainly in the pre-1945 era, see Koijen and Nieuwerburgh (2011). Since we use the first 16 years of data (1930-1945)
to construct our measure of past uncertainty, our effective sample spans the post-1945 period and our results are less
affected by the choice of the dividend reinvestment strategy.
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C, Table 10) are remarkable. At 2 years, dividend-to-price and past long-run variance explain 20%

of the variability in excess returns. The number becomes 48% at 5 years, 84% at 10 years, and

78% at 15 years. Dividend growth is different. The dividend-to-price ratio is insignificant across

the board (Panel A, Table 12). Past long-run variance, instead, has predictive ability for dividend

growth at all horizons (Panel B, Table 12): the R2 is 10% at 1 year, 35% at 5 years, 51% at 10

years, and 60% at 15 years.

[Insert Tables 10, 11 and 12 about here.]

12.2 (Log) consumption variance

Past long-run consumption variance operates in a similar fashion (Table 14). As earlier, the horizon

k over which we observe “closure” of the estimated slopes on cash flow and discount rate regressions

is 18 years. At 18 years, the estimated slope from cash flow regressions on past long-run consumption

variance (0.03) is very statistically significant (t-statistics of 5.30). The statistical significance of

the estimated slope associated with the discount rate regressions is lower but, as explained, this is

a by-product of the lower signal from long-run return regressions.

Turning to simple returns and predictability over different frequencies, past long-run consump-

tion has somewhat lower predictive ability than past long-run market variance at all horizons (Table

13, Panel B). Statistical significance begins at 7 years. As earlier, past long-run consumption vari-

ance predicts dividend growth strongly (Table 15, Panel B).

[Insert Tables 13, 14 and 15 about here.]

12.3 (Log) EPU2

At k=18, the slopes from cash flow and discount rate regressions onto past EPU have not converged

yet (Table 17). Specifically, there is residual predictable variation associated with the 18-period

ahead (discounted) log dividend-to-price ratio. The estimated slope is -0.01 versus estimated slopes

on r18
t and ∆d18

t equal to 0.02 and 0.01, respectively. The value is, therefore, economically mean-

ingful. The corresponding t-statistic is a substantial -5.44. Closure of the slopes would, in this case,

occur over a slightly longer 20-year horizon.

Predictability for returns (Table 16) and dividend growth (Table 18) over different horizons much

resembles the case of past market variance. Some numbers: at 5, 10, and 15 years, dividend-to-price
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and past EPU predict returns with an R2 of about 50%, 85%, and 82%, respectively.

[Insert Tables 16, 17 and 18 about here.]

13 Robustness...

13.1 ... to aggregation

Past uncertainty was defined by aggregating single period proxies over a 16-year time period - Tables

3, 4, and 5 justify this choice. Changing the aggregation horizon to a number of years between 10

and 16, however, does not modify the reported findings in any relevant fashion. As an example,

Tables A1 and A2, in the On-line Appendix, report the 14-year case. Aggregation over a 10-year

horizon is sufficient to extract economically-relevant, slow-moving, uncertainty components.

13.2 ... to transformations

We used logarithmic transformations (of variance). Using variance, or volatility, does not affect

the reported results meaningfully. In Tables A3 and A4 in the On-line Appendix we document the

variance case.

13.3 ... to alternative measures of macroeconomic uncertainty

Using an alternative proxy of macroeconomic uncertainty, as in, e.g., Jurado, Ludvigson, and Ng

(2015), would not modify our findings. We report the corresponding results, again, in the On-line

Appendix. The sample is now shorter: 1960-2014 for the raw series. Due to data limitations,

macroeconomic uncertainty is now aggregated over 8 years. Similar results, however, are obtained

for levels of aggregations between 8 and 12 years.

[Insert Table 19 about here.]

14 Conclusions and further discussion

Economic relations may apply to individual layers in the cascade of shocks affecting the economy

and be hidden by effects at alternative, higher frequencies.
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To capture this idea parsimoniously, this paper models stock market returns and their predictors

as aggregates of uncorrelated components operating over different scales and introduce a notion of

scale-specific predictability, i.e., predictability on the components, layers, or details.

We propose direct extraction of the time-series details - and predictive regressions on the details

- as well as indirect extraction by means of two-way aggregation of the raw series - and predictive

regressions on forward/backward aggregates of the raw series. The mapping between the two meth-

ods is established theoretically and in simulation and their close relation is exploited empirically.

The direct method allows one to identify the data generating process (i.e., the details and, upon

reconstruction, the original series) as well as their predictive link. The indirect method provides one

with a rather immediate way to evaluate the frequency at which layers in the information flow are

connected across economic variables and employ this information for prediction. Two-way aggre-

gation, in particular, offers a natural way to exploit scale-specific predictability (in asset allocation

over alternative low frequencies, including the very long run, for instance).

Using both direct extraction of the details and two-way aggregation, we offer unusually strong

evidence about the existence of risk-return trade-offs on slow-moving components of the return and

variance process with cycles between 8 and 16 years. These scale-wise trade-offs translate into

equally strong dependence between long-run future returns and long-run past variance with a peak

of predictability around 16 years.

The reported tent-shaped pattern - an implication of the theory we propose - requires all fre-

quencies to cooperate. In this sense, we jointly exploit the informational content of the data at all

frequencies, i.e., in regions of the data space with inevitably high statistical uncertainty as well as

in largely-populated regions of the data space.

Our predictive results hold regardless of the notion of variance used, whether it is consump-

tion variance, market variance, or a proxy for economic policy uncertainty (EPU). This robustness

speaks to the link between macro uncertainty, as represented by consumption variance and EPU,

and uncertainty in financial markets, as represented by market variance, when focusing on their

components with 8-to-16 year cycles. While the existing literature has found it hard to relate, em-

pirically, consumption variance and market variance, we report a remarkable 80%/90% correlation

between their details with fluctuations lower than the business cycle.

Successful return predictors (other than the dividend-to-price ratio) generally modify the term

structures of short and medium-term return predictability. However, they do not lead to significant
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long-run return forecasts (Cochrane (2011)). These predictors do not forecast dividend growth

either. The investment-to-capital ratio is an example (see On-line Appendix, Tables A5-A7).

In agreement with its long-run predictive ability, this paper shows that past long-run uncertainty

yields substantial cash-flow predictability as well.
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Annual calendar time

Time-scale Frequency resolution

j = 1 1− 2 years
j = 2 2− 4 years
j = 3 4− 8 years
j = 4 8− 16 years

π
(4)
t > 16 years

Table 1: Interpretation of the time-scale (or persistence level) j in terms of time spans in the case
of annual time series. Each scale corresponds to a frequency interval, or conversely an interval of
periods, and thus each scale is associated with a range of time horizons.

Panel A: Panel B:
Market excess returns Consumption risk

Scales j = 1 2 3 4 1 2 3 4
1 -0.03 -0.04 0.09 0.33 0.17 -0.09

(0.09) (0.07) (0.05) (0.18) (0.10) (0.09)
2 -0.13 0.15 -0.09 -0.12

(0.09) (0.10) (0.26) (0.15)
3 0.14 -0.06

(0.13) (0.13)

Panel C: Panel D:
Market risk Economic policy uncertainty

Scales j = 1 2 3 4 1 2 3 4
1 0.27 -0.13 0.00 0.08 0.09 0.06

(0.12) (0.09) (0.06) (0.09) (0.11) (0.05)
2 -0.03 -0.00 0.22 0.09

(0.15) (0.09) (0.09) (0.08)
3 0.33 0.32

(0.12) (0.15)

Table 2: Pairwise correlations. We report the pair-wise correlations between the individual
details of excess market returns (Panel A), consumption variance (Panel B), market variance (Panel
C), and (squared) economic policy uncertainty (Panel D). The pair-wise correlations are obtained
by using redundant data on the details rather than the decimated counterparts. Standard errors

for the correlation between x
(j)
t and x

(j′)
t , j 6= j′, are Newey-West with 2max(j,j′) lags.
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Panel A: yt+1,t+h = αh + βhxt−h+1,t + εt+h

Horizon h (in years)
1 2 4 8 10 12 14 16 18 20

Median of βh 0.07 -0.26 -1.20 -1.70 0.28 2.58 4.12 4.48 4.05 2.14
SD of βh (1.15) (1.11) (0.90) (1.18) (1.21) (1.22) (1.43) (1.70) (1.77) (1.82)

Median of Adj.R2 [0.04] [0.09] [2.91] [7.55] [10.65] [17.75] [43.82] [53.65] [44.69] [26.67]

Panel B: yt+1,t+h = αh + βhxt+1,t+h + εt+h

Horizon h (in years)
1 2 4 8 10 12 14 16 18 20

Median of βh 0.26 0.24 0.16 -0.28 -0.69 -1.25 -1.81 -2.10 -1.84 -1.45
SD of βh (1.34) (1.43) (1.51) (1.62) (1.72) (1.77) (1.91) (2.10) (2.07) (2.06)

Median of Adj.R2 [0.42] [1.12] [2.11] [3.03] [4.34] [5.24] [8.54] [12.13] [10.57] [8.25]

Panel C: Distribution of coefficient estimates and of R2s

β increasing 6-12 (%) 52.20
β decreasing 16-20 (%) 66.80
β hump-shape (%) 37.20

R2 increasing 6-12 (%) 39.20
R2 decreasing 16-20 (%) 63.40
R2 hump-shape (%) 31.20
R2 hump-shape & R2 > 50% (%) 23.40
R2 hump-shape & R2 > 50% & R2

16 −R2
20 > 30%(%) 18.80

R2 and β hump-shape (%) 26.20
R2 and β hump-shape & R2 > 50% (%) 21.20
R2 and β hump-shape & R2 > 50% & R2

16 −R2
20 > 30%(%) 18.80

Table 8: Simulation under the null of scale-dependent predictability. The relation is
at scale j∗ = 4. We simulate excess market returns (y) and consumption volatility (x) under the

assumption of predictability at scale j∗ = 4. We simulate x
(j)
t = ρjx

(j)

t−2j
+ ε

(j)
t for j = 4 and x

(j)
t =

ε
(j)
t otherwise. We implement 100000 replications. We set T = 128. For each regression, the table

reports the median and the standard deviation (in parentheses) of the coefficient estimates from the
predictive regression as well as the median of the adjusted R2 statistics (in square brackets). Panel
A: two-way (forward/backward) regressions. We run linear regressions (with an intercept) of
h-period continuously compounded excess market returns on h-period past consumption volatility.
Panel B: contemporaneous aggregation. We run linear regressions (with an intercept) of h-
period continuously compounded excess market returns on h-period contemporaneous consumption
volatility. Panel C: Distribution of coefficient estimates and of R2s. “β (R2) increasing
6-12” is the percentage of the simulations that produce coefficients (R2s) that are monotonic in
the horizons 6 to 12 years, i.e. β12 > β11 > . . . > β6 (R2

12 > R2
11 > . . . > R2

6, respectively). “β
(R2) decreasing 16-20” is the percentage of the simulations that produce coefficients (R2s) that are
decreasing in the horizons 16 to 20 years, i.e. β16 > β17 > . . . > β20 (R2

16 > R2
17 > . . . > R2

20,
respectively). “β (R2) hump-shape” is the percentage of the simulations that produce coefficients
that are increasing in the horizons 6 to 12 years, and decreasing in the horizons 16 to 20 years. “R2

hump-shape & > 50%” is the percentage of the simulations that produce R2s that are increasing in
the horizons 6 to 12 years, and decreasing in the horizons 16 to 20 years, and with an R2

h > 50% in
the range 12 ≤ h ≤ 16.
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Horizon h (in years)
1 2 4 8 10 12 14 16 18 20

xt−h+1,t 0.00 0.00 -0.00 -0.00 0.00 -0.01 0.00 -0.01 0.00 -0.00
(0.10) (0.12) (0.14) (0.10) (0.12) (0.14) (0.16) (0.19) (0.20) (0.21)

Adj.R2 [0.01] [0.09] [0.58] [0.33] [1.11] [1.42] [1.67] [2.20] [2.54] [2.24]

Table 9: Simulation under the null of ABSENCE of scale-dependent predictability. We
simulate excess market returns (y) and market variance (x) under the assumption of no predictabil-

ity. We simulate x
(j)
t = ρjx

(j)

t−2j
+ εt,j for j = 4 and x

(j)
t = ε

(j)
t otherwise. We implement 500

replications. We set T = 128. We then run linear regressions (with an intercept) of h-period con-
tinuously compounded excess market returns on h-period past realized market variances. For each
regression, the table reports the median and the standard deviation (in parentheses) of the coeffi-
cient estimates from the predictive regression as well as the median of the adjusted R2 statistics (in
square brackets).
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Panel A: Direct regression, k = 16

Coefficients

Right-Hand Variable
∑k

j=1 ρ
j−1rt+j

∑k
j=1 ρ

j−1∆dt+j ρkdpt+k
dpt 1.52 0.35 -0.17

(4.96) (1.90) (-0.98)

R2(%) [60.67] [25.79] [3.48]

vt−h,t 0.04 0.02 -0.01
(2.50) (4.19) (-1.66)

R2(%) [16.07] [45.83] [7.55]

Panel B: Direct regression, k = 18

Coefficients

Right-Hand Variable
∑k

j=1 ρ
j−1rt+j

∑k
j=1 ρ

j−1∆dt+j ρkdpt+k
dpt 1.50 0.31 -0.19

(5.74) (1.69) (-1.19)

R2(%) [61.08] [20.09] [4.96]

vt−h,t 0.03 0.03 -0.00
(2.01) (4.96) (-1.39)

R2(%) [13.73] [58.21] [1.89]

Table 11: Long-Run Regression Coefficients: Market risk. Direct regressions on log DP and log

market variance aggregated over H = 16 years. Panel A: Direct regression, k = 16. “Direct” regression

estimates are calculated using k-year ex post returns, dividend growth, and dividend yields as left-hand

variables. Panel B: Direct regression , k = 18. “Direct” regression estimates are calculated using k-

year ex post returns, dividend growth, and dividend yields as left-hand variables. Table entries are long-run

regression coefficients, for example, b
(k)
r in

∑k
j=1 ρ

j−1rt+j = a+b
(k)
r dpt+ε

r
t+k. Annual CRSP data, 1945-2014.
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Panel A: Direct regression, k = 16

Coefficients

Right-Hand Variable
∑k

j=1 ρ
j−1rt+j

∑k
j=1 ρ

j−1∆dt+j ρkdpt+k
dpt 1.52 0.35 -0.17

(4.96) (1.90) (-0.98)

R2(%) [60.67] [25.79] [3.48]

vt−h,t 0.03 0.02 -0.01
(2.36) (4.74) (-0.76)

R2(%) [6.96] [34.09] [0.75]

Panel B: Direct regression, k = 18

Coefficients

Right-Hand Variable
∑k

j=1 ρ
j−1rt+j

∑k
j=1 ρ

j−1∆dt+j ρkdpt+k
dpt 1.50 0.31 -0.19

(5.74) (1.69) (-1.19)

R2(%) [61.08] [20.09] [4.96]

vt−h,t 0.03 0.03 0.00
(1.92) (5.30) (0.29)

R2(%) [5.60] [40.24] [0.05]

Table 14: Long-Run Regression Coefficients: Consumption risk. Direct regressions on log DP and

log consumption variance aggregated over H = 16 years. Panel A: Direct regression, k = 16. “Direct”

regression estimates are calculated using k-year ex post returns, dividend growth, and dividend yields as

left-hand variables. Panel B: Direct regression , k = 18. “Direct” regression estimates are calculated

using k-year ex post returns, dividend growth, and dividend yields as left-hand variables. Table entries are

long-run regression coefficients, for example, b
(k)
r in

∑k
j=1 ρ

j−1rt+j = a+ b
(k)
r dpt + εrt+k. Annual CRSP data,

1945-2014.
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Panel A: Direct regression, k = 16

Coefficients

Right-Hand Variable
∑k

j=1 ρ
j−1rt+j

∑k
j=1 ρ

j−1∆dt+j ρkdpt+k
dpt 1.52 0.35 -0.17

(4.96) (1.90) (-0.98)

R2(%) [60.67] [25.79] [3.48]

vt−h,t 0.03 0.01 -0.02
(2.27) (2.60) (-5.61)

R2(%) [32.42] [37.26] [45.71]

Panel B: Direct regression, k = 18

Coefficients

Right-Hand Variable
∑k

j=1 ρ
j−1rt+j

∑k
j=1 ρ

j−1∆dt+j ρkdpt+k
dpt 1.50 0.31 -0.19

(5.74) (1.69) (-1.19)

R2(%) [61.08] [20.09] [4.96]

vt−h,t 0.02 0.01 -0.01
(2.17) (3.05) (-5.44)

R2(%) [29.81] [47.39] [33.34]

Table 17: Long-Run Regression Coefficients on log DP and (log of squared) economic policy

uncertainty (Baker, Bloom and Davis, 2015) aggregated over H = 16 years. Panel A: Direct

regression, k = 16. “Direct” regression estimates are calculated using k-year ex post returns, dividend

growth, and dividend yields as left-hand variables. Panel B: Direct regression , k = 18. “Direct”

regression estimates are calculated using k-year ex post returns, dividend growth, and dividend yields as

left-hand variables. Table entries are long-run regression coefficients, for example, b
(k)
r in

∑k
j=1 ρ

j−1rt+j =

a+ b
(k)
r dpt + εrt+k. Annual CRSP data, 1945-2014.
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Appendix

A Filtering

This Appendix provides a concise introduction to the extraction procedure for the details.
Let {xt−i}i∈Z be a time series of interest. Consider the case J = 1. We have

xt =
xt − xt−1

2︸ ︷︷ ︸
x
(1)
t

+

[
xt + xt−1

2

]
︸ ︷︷ ︸

π
(1)
t

,

which effectively amounts to breaking the series down into a ”transitory” and a ”persistent” component. Set,
now, J = 2. We obtain

xt =
xt − xt−1

2︸ ︷︷ ︸
x
(1)
t

+

[
xt + xt−1 − xt−2 − xt−3

4

]
︸ ︷︷ ︸

x
(2)
t

+

[
xt + xt−1 + xt−2 + xt−3

4

]
︸ ︷︷ ︸

π
(2)
t

,

which further separates the persistent component π
(1)
t into an additional ”transitory” and an additional

”persistent” component.

The procedure can, of course, be iterated yielding a general expression for the generic detail x
(j)
t , i.e.,

x
(j)
t =

∑2(j−1)−1
i=0 xt−i

2(j−1)
−
∑2j−1
i=0 xt−i

2j
= π

(j−1)
t − π(j)

t ,

where the element π
(j)
t satisfies the recursion

π
(j)
t =

π
(j−1)
t + π

(j−1)
t−2j−1

2
.

In essence, for every t, {xt−i}i∈Z can be written as a collection of details x
(j)
t with different degrees of

resolution (i.e., calendar-time persistence) along with a low-resolution approximation π
(J)
t . Equivalently, it

can be written as a telescopic sum

xt =

J∑
j=1

{
π
(j−1)
t − π(j)

t

}
︸ ︷︷ ︸

x
(j)
t

+ π
(J)
t = π

(0)
t , (A.1)

in which the details are naturally viewed as changes in information between scale 2j−1 and scale 2j . The
scales are dyadic and, therefore, enlarge with j. The higher j, the lower the level of resolution. In particular,

the innovations x
(j)
t = π

(j−1)
t −π(j)

t become smoother, and more persistent in calendar time, as j increases. As
discussed in the main text, the representation in Eq. (A.1) is especially useful when discussing aggregation.

A.1 Decimation

Decimation is the process of defining non-redundant information, as contained in a suitable number of non-
overlapping “typical” points, in the observed details. Referring back to Fig. 1, the panels on the right-hand
side are constructed from these ”typical” points and, therefore, only contain essential information about the
corresponding scale.
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Let us now return to the case J = 2, as in the example above, but similar considerations apply more
generally. Define the vector

Xt = [xt, xt−1, xt−2, xt−3]ᵀ

and consider the orthogonal Haar transform matrix

T (2) =


1
4

1
4

1
4

1
4

1
4

1
4 − 1

4 − 1
4

1
2 − 1

2 0 0
0 0 1

2 − 1
2

 .

It is easy to see that T (2)(T (2))> is diagonal and

T (2)Xt =
[
π
(2)
t , x

(2)
t , x

(1)
t , x

(1)
t−2

]ᵀ
.

By letting time t vary in the set
{
t = k22 with k ∈ Z

}
one can now define (from T (2)Xt) the decimated coun-

terparts of the calendar-time details, namely
{
x
(j)
t , t = k2j with k ∈ Z

}
for j = 1, 2 and

{
π
(2)
t , t = k22 with k ∈ Z

}
. Mallat (1989) provides a recursive algorithm for the general case with J not necessarily equal to 2.16

The separation of a time series in terms of details with different levels of resolution is conducted using
wavelets as in Multiresolution Analysis (see, e.g., Mallat (1989), Dijkerman and Mazumdar (1994), Yazici and
Kashyap (1997)). Wavelets analysis has been widely employed to study economic and financial time series
(we refer to the comprehensive treatments in Ramsey (1999), Percival and Walden (2000), Gençay, Selçuk,
and Whitcher (2001), and Crowley (2007) for discussions and references). Our use of multiresolution filters
is, however, solely intended to facilitate extraction of scale-specific information. As emphasized, differently
from the existing economic literature on wavelets, and its reliance on traditional time-series representations
of the Wold type, once extracted, the components are thought to be driven by time and scale-specific shocks.
In light of our discussion in the main text, the proposed data generating process is key to justify the reported
results and the novel notion of scale-specific predictability introduced in this paper.

B Scale-specific shocks

Consider, using the terminology employed earlier, a scale-wise AR process with mean π. Since the details

are autoregressive with uncorrelated (across time and scale) scale-specific shocks ε
(j)
t , the conventional Wold

theorem, applied to the details, implies that each observation xt can be decomposed into a cascade of shocks,
i.e.,

xt =

J∑
j=1

∞∑
k=0

aj,kε
(j)
t−k2j + π, (B.1)

with aj,k = E
(
xt, ε

(j)
t−k2j

)
. Hence, our assumed data generating process represents the idea that full infor-

mation updates require the realization of the economic shocks affecting all frequencies.
It is interesting to observe that one can write an analogous decomposition (understood in the mean-

16In general, we can use the components x
(j)
t , j = 1, .., J , and π

(J)
t in their entirety to reconstruct the time series

using (A.1). This is the redundant decomposition of a time series proposed in Renaud, Starck, and Murtagh (2005).
Alternatively, one can reconstruct the time series signal from the decimated components using the (inverse of the)
Haar unitary matrix, see Appendix C.
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squared sense) for any weakly stationary time series {xt−i}i∈Z:

xt =

J∑
j=1

∞∑
k=0

aj,kε
(j)
t−k2j +

∞∑
k=0

bJ,kπ
(J)

ε,t−k2J ,t−(k+1)2J+1
, (B.2)

where

ε
(j)
t = x

(j)
t − PMj,t−2j

x
(j)
t =

√
2j

(∑2j−1−1
i=0 εt−i

2j−1
−
∑2j−1
i=0 εt−i

2j

)
(B.3)

and PMj,t−2j
is a projection mapping onto the closed subspace Mj,t−2j spanned by

{
x
(j)
t−k2j

}
k∈Z

,

π
(J)

ε,t−k2J ,t−(k+1)2J+1
=
√

2J

∑t−k2J
i=t−(k+1)2J+1 εi

2J

 ,

with εt = xt − PMt−1
xt satisfying V ar(εt) = 1,

aj,k = E
(
xt, ε

(j)
t−k2j

)
,

and
bj,k = E

(
xt, π

(J)

ε,t−k2J ,t−(k+1)2J+1

)
.

Again, Eq. (B.2) is a (form of) Wold representation which applies to each scale and, hence, to the full process.
Specifically, it explicitly describes any weakly-stationary time series of interest as a linear combination of
shocks classified on the basis of their arrival time as well as their scale. We refer the reader to Wong
(1993) for a similar decomposition. Below, we show formally that Eq. (B.2) reduces to the classical Wold
representation for weakly-stationary time series.

It is important to remark that the expression in Eq. (B.2) is neither unique, nor economically-motivated.
Specifically, the expression hinges on the Haar filter. A different filter would give rise to an alternative

expression for π
(J)
t as well as for the low-frequency shocks ε

(j)
t as aggregates of high-frequency shocks (c.f.,

Eq. (B.3)).
A crucial innovation of the approach advocated in this paper is to highlight that Eq. (B.2) (and, given

their equivalency, the classical Wold representation for weakly-stationary process) can, in fact, be viewed
as the result of restrictions on the shocks across scales. Eq. (B.3) is, in effect, a restriction. Our pre-
ferred approach in Eq. (B.1), instead, frees up the shocks in order to generate what we consider to be an
economically-important separation between innovations - and information - at different scales.

B.1 The classical Wold representation as a restriction on a generalized (time-
scale) Wold representation

We begin with

xt =

J∑
j=1

∞∑
k=0

aj,kε
(j)
t−k2j +

∞∑
k=0

bJ,kπ
(J)

ε,t−k2J ,t−(k+1)2J+1
,

where all the terms were defined in Section 1. Consider the case J = 2 and the interval [t, t− 7]. We have

xt = a1,0ε
(1)
t + a1,1ε

(1)
t−2 + a1,2ε

(1)
t−4 + a1,3ε

(1)
t−6 + ...+

+a2,0ε
(2)
t + a2,1ε

(2)
t−4 + ...+

+b2,0π
(2)
ε,t,t−3 + b2,1π

(2)
ε,t−4,t−7 + . . .
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Now, recall that

ε
(j)
t =

√
2j

(∑2j−1−1
i=0 εt−i

2j−1
−
∑2j−1
i=0 εt−i

2j

)
.

Then,

a1,0 = E
(
xt, ε

(1)
t

)
= E

(
xt,

εt√
2
− εt−1√

2

)
=
ψ0√

2
− ψ1√

2

a1,1 = E
(
xt, ε

(1)
t−2

)
= E

(
xt,

εt−2√
2
− εt−3√

2

)
=
ψ2√

2
− ψ3√

2

a1,2 = E
(
xt, ε

(1)
t−4

)
= E

(
xt,

εt−4√
2
− εt−5√

2

)
=
ψ4√

2
− ψ5√

2

a1,3 = E
(
xt, ε

(1)
t−6

)
= E

(
xt,

εt−6√
2
− εt−7√

2

)
=
ψ6√

2
− ψ7√

2

...

a2,0 = E
(
xt, ε

(2)
t

)
= E

(
xt,

εt + εt−1
2

− εt−2 + εt−3
2

)
=
ψ0

2
+
ψ1

2
− ψ2

2
− ψ3

2

a2,1 = E
(
xt, ε

(2)
t−4

)
= E

(
xt,

εt−4 + εt−5
2

− εt−6 + εt−7
2

)
=
ψ4

2
+
ψ5

2
− ψ6

2
− ψ7

2

...

b2,0 = E
(
xt, π

(2)
ε,t,t−3

)
=
ψ0

2
+
ψ1

2
+
ψ2

2
+
ψ3

2

b2,1 = E
(
xt, π

(2)
ε,t−4,t−7

)
=
ψ4

2
+
ψ5

2
+
ψ6

2
+
ψ7

2
...

with
ψj = E(xt, εt−j).

Finally, notice that

ψ0

(
1√
2
ε
(1)
t +

1

2
ε
(2)
t +

1

2
π
(2)
ε,t,t−3

)
= ψ0εt

ψ1

(
− 1√

2
ε
(1)
t +

1

2
ε
(2)
t +

1

2
π
(2)
ε,t,t−3

)
= ψ1εt−1

ψ2

(
1√
2
ε
(1)
t−2 −

1

2
ε
(2)
t +

1

2
π
(2)
ε,t,t−3

)
= ψ2εt−2

ψ3

(
− 1√

2
ε
(1)
t−2 −

1

2
ε
(2)
t +

1

2
π
(2)
ε,t,t−3

)
= ψ3εt−3

ψ4

(
1√
2
ε
(1)
t−4 +

1

2
ε
(2)
t−4 +

1

2
π
(2)
ε,t−4,t−7

)
= ψ4εt−4

ψ5

(
− 1√

2
ε
(1)
t−4 +

1

2
ε
(2)
t−4 +

1

2
π
(2)
ε,t−4,t−7

)
= ψ5εt−5

ψ6

(
1√
2
ε
(1)
t−6 −

1

2
ε
(2)
t−4 +

1

2
π
(2)
ε,t−4,t−7

)
= ψ6εt−6

ψ7

(
− 1√

2
ε
(1)
t−6 −

1

2
ε
(2)
t−4 +

1

2
π
(2)
ε,t−4,t−7

)
= ψ7εt−7,
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which yields the standard Wold representation:

xt = ψ0εt + ψ1εt−1 + ψ2εt−2 + . . .

C Understanding two-way aggregation

C.1 Dynamics of time-scale components

Consider the following component (or detail) dynamics for j = j∗, where j∗ ∈ {1, . . . , J}:

y
(j)
t+2j = βjx

(j)
t (C.1)

x
(j)
t+2j = ρjx

(j)
t + σjεt+2j (C.2)

For j = 1, . . . , J , with j 6= j∗, we have

y
(j)
t = 0, (C.3)

x
(j)
t = 0. (C.4)

Assume - for conciseness - that T = 16, j∗ = 2, and J = 3. Arrange the details of x as follows:

π
(3)
8 π

(3)
16

x
(3)
8 x

(3)
16

x
(2)
8 x

(2)
16

x
(2)
4 x

(2)
12

x
(1)
8 x

(1)
16

x
(1)
6 x

(1)
14

x
(1)
4 x

(1)
12

x
(1)
2 x

(1)
10


(C.5)

and, analogously, for the details of y. Consider the following isometric transform matrix:

T (3) =



1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8
− 1√

8
− 1√

8
− 1√

8
− 1√

8
1
2

1
2 − 1

2 − 1
2 0 0 0 0

0 0 0 0 1
2

1
2 − 1

2 − 1
2

1√
2
− 1√

2
0 0 0 0 0 0

0 0 1√
2
− 1√

2
0 0 0 0

0 0 0 0 1√
2
− 1√

2
0 0

0 0 0 0 0 0 1√
2
− 1√

2


. (C.6)
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To reconstruct the time series xt, we run through each column of the matrix (C.5) and, for each
column, we perform the following operation:

X
(3)
8 =



x8

x7

x6

x5

x4

x3

x2

x1


=
(
T (3)

)−1



π
(3)
8

x
(3)
8

x
(2)
8

x
(2)
4

x
(1)
8

x
(1)
6

x
(1)
4

x
(1)
2


(C.7)

and

X
(3)
16 =



x16

x15

x14

x13

x12

x11

x10

x9


=
(
T (3)

)−1



π
(3)
16

x
(3)
16

x
(2)
16

x
(2)
12

x
(1)
16

x
(1)
14

x
(1)
12

x
(1)
10


. (C.8)

We do the same for the details of yt. The matrix
(
T (3)

)−1
takes the following form:

(
T (3)

)−1
=



1√
8

1√
8

1
2 0 1√

2
0 0 0

1√
8

1√
8

1
2 0 − 1√

2
0 0 0

1√
8

1√
8
−1

2 0 0 1√
2

0 0
1√
8

1√
8
−1

2 0 0 − 1√
2

0 0
1√
8
− 1√

8
0 1

2 0 0 1√
2

0
1√
8
− 1√

8
0 1

2 0 0 − 1√
2

0
1√
8
− 1√

8
0 −1

2 0 0 0 1√
2

1√
8
− 1√

8
0 −1

2 0 0 0 − 1√
2


. (C.9)

72



Using the dynamics of the state (C.2), (C.7) and (C.8), we obtain

X
(3)
16 =



x16 = x
(2)
16 /2

x15 = x
(2)
16 /2

x14 = −x(2)
16 /2

x13 = −x(2)
16 /2

x12 = x
(2)
12 /2

x11 = x
(2)
12 /2

x10 = −x(2)
12 /2

x9 = −x(2)
12 /2


(C.10)

and

X
(3)
8 =



x8 = x
(2)
8 /2

x7 = x
(2)
8 /2

x6 = −x(2)
8 /2

x5 = −x(2)
8 /2

x4 = x
(2)
4 /2

x3 = x
(2)
4 /2

x2 = −x(2)
4 /2

x1 = −x(2)
4 /2


. (C.11)

C.2 Aggregation

C.2.1 Fitting an AR(1) process to the regressor

Given the assumed data-generating process in scale time, we fit an AR(1) process in calendar time
to xt:

xt+1 = ρ̃xt + εt+1.

From (C.10) and (C.11), it is easy to see that, for j∗ = 2:

ρ̃ =
1− ρj∗

4
.

For a more general j∗, i.e., if the process for xt is given by (C.2) and (C.4), then

ρ̃ =

1 + 1 + . . .︸ ︷︷ ︸
2j∗−1−1

−1 + 1 + 1 + . . .︸ ︷︷ ︸
2j∗−1−1

−ρj∗

2j∗
.

This result clarifies the relation between scale-wise persistence (ρj∗) and persistence in calendar
time (ρ̃). If ρj∗ < 1− 4

2j∗+1
, then ρ̃ > ρj∗ for all j∗. However, as j∗ grows large, ρ̃ approximates 1.

In other words, the largest the driving scale, the largest the calendar-time correlation irrespective
of the actual scale-wise correlation.
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C.2.2 Two-way (forward/backward) regressions

Let us construct the temporally-aggregated series

yt+1,t+h =
h∑
i=1

yt+i

and run the forward/backward regression

yt+1,t+h = β̃xt−h+1,t + εt+1,t+h,

where xt+1,t+h is defined like yt+1,t+h. For h = 4, and using (C.1) and (C.3) together with (C.10)
and (C.11), we have

y13,16 = 0 x13,16 = 0

y12,15 = (−y(2)
16 + y

(2)
12 )/2 = β

(
−x(2)

12 + x
(2)
8

)
/2 x12,15 = (−x(2)

16 + x
(2)
12 )/2

y11,14 = −y(2)
16 + y

(2)
12 = β

(
−x(2)

12 + x
(2)
8

)
x11,14 = −x(2)

16 + x
(2)
12

y10,13 = (−y(2)
16 + y

(2)
12 )/2 = β

(
−x(2)

12 + x
(2)
8

)
/2 x10,13 = (−x(2)

16 + x
(2)
12 )/2

y9,12 = 0 x9,12 = 0

y8,11 = (−y(2)
12 + y

(2)
8 )/2 = β

(
−x(2)

8 + x
(2)
4

)
/2 x8,11 = (−x(2)

12 + x
(2)
8 )/2

y7,10 = −y(2)
12 + y

(2)
8 = β

(
−x(2)

8 + x
(2)
4

)
x7,10 = −x(2)

12 + x
(2)
8

y6,9 = (−y(2)
12 + y

(2)
8 )/2 = β

(
−x(2)

8 + x
(2)
4

)
/2 x6,9 = (−x(2)

12 + x
(2)
8 )/2

y5,8 = 0 x5,8 = 0

y4,7 = (−y(2)
8 + y

(2)
4 )/2 = β

(
−x(2)

4 + x
(2)
0

)
/2 x4,7 = (−x(2)

8 + x
(2)
4 )/2

y3,6 = −y(2)
8 + y

(2)
4 = β

(
−x(2)

4 + x
(2)
0

)
x3,6 = −x(2)

8 + x
(2)
4

y2,5 = (−y(2)
8 + y

(2)
4 )/2 = β

(
−x(2)

4 + x
(2)
0

)
/2 x2,5 = (−x(2)

8 + x
(2)
4 )/2

y1,4 = 0 x1,4 = 0.

Thus, regressing yt+1,t+4 on xt−3,t yields β̃ = β with R2 = 100%. Hence, when scale-wise pre-

dictability applies to a scale operating between 2j
∗−1 and 2j

∗
, maximum predictability upon two-

way aggregation arises over an horizon h = 2j
∗
. In our case, j∗ = 2 and h = 4. Consider, for
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example, an alternative aggregation level: h = 2. We have

y15,16 = y
(2)
16 = βx

(2)
12 x15,16 = x

(2)
16

y14,15 = 0 x14,15 = 0

y13,14 = −y(2)16 = −βx(2)12 x13,14 = −x(2)16

y12,13 = (−y(2)16 + y
(2)
12 )/2 = β(−x(2)12 + x

(2)
8 )/2 x12,13 = (−x(2)16 + x

(2)
12 )/2

y11,12 = y
(2)
12 = βx

(2)
8 x11,12 = x

(2)
12

y10,11 = 0 x10,11 = 0

y9,10 = −y(2)12 = −βx(2)8 x9,10 = −x(2)12

y8,9 = (−y(2)12 + y
(2)
8 )/2 = β(−x(2)8 + x

(2)
4 )/2 x8,9 = (−x(2)12 + x

(2)
8 )/2

y7,8 = y
(2)
8 = βx

(2)
4 x7,8 = x

(2)
8

y6,7 = 0 x6,7 = 0

y5,6 = −y(2)8 = −βx(2)4 x5,6 = −x(2)8

y4,5 = (−y(2)8 + y
(2)
4 )/2 = β(−x(2)4 + x

(2)
0 )/2 x4,5 = (−x(2)8 + x

(2)
4 )/2

y3,4 = y
(2)
4 = βx

(2)
0 x3,4 = x

(2)
4

y2,3 = 0 x2,3 = 0

y1,2 = −y(2)4 = −βx(2)0 x1,2 = −x(2)4 ,

where we use the implied dynamics for x, see equations (C.10) and (C.11), and the equivalent
ones for y together with (C.1) and (C.2). The regression of yt+1,t+2 on xt−1,t yields (based on a
fundamental block of four elements):

β̃ =
Cov(y15,16, x13,14) + Cov(y13,14, x11,12)

V ar (x10,11) + V ar (x11,12) + V ar (x12,13) + V ar (x13,14)

=
−βV ar

(
x

(2)
12

)
ρ− βV ar

(
x

(2)
12

)
V ar

(
x

(2)
12

)
+ V ar

(
x
(2)
16
2

)
+ V ar

(
x
(2)
12
2

)
−

Cov
(
x
(2)
16 ,x

(2)
12

)
2 + V ar

(
x

(2)
16

)
= −2β

(1 + ρj)

5− ρj

and, hence, an inconsistent slope estimate. This estimate could have a changed sign (with respect
to β) and be drastically attenuated. In fact, β̃ = 0 if ρj = −1 and β̃ = −β if ρj = 1.

C.2.3 Contemporaneous aggregation

We now run the contemporaneous regression

yt+1,t+h = β̃xt+1,t+h + εt+1,t+h.
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For h = 4, the relevant 4-term block contains terms like:

yt+1,t+h = β(−x(2)
12 + x

(2)
8 )/2

xt+1,t+h = (−x(2)
16 + x

(2)
12 )/2

By taking covariances we obtain

β̃ = β

(
−Var(x

(2)
12 ) + ρj Var(x

(2)
12 )− ρ2

j Var(x
(2)
12 ) + ρj Var(x

(2)
12 )
)

Var(x
(2)
16 ) + Var(x

(2)
12 )− 2cov(x

(2)
16 , x

(2)
12 )

= β

(
−1 + 2ρj − ρ2

j

)
2(1− ρj)

= −β (1− ρj)
2

.

Again, β̃ 6= β. Its sign is also incorrect. We note that, in this case, β̃ = 0 if ρj = 1 and β̃ = −β if
ρj = −1. The R2 is equal to

R2 =
β̃2 Var

(
−x(2)

12 + x
(2)
8

)
β2 Var

(
−x(2)

12 + x
(2)
8

) =

(
1− ρj

2

)2

.

The larger ρj , the smaller the R2, and the more attenuated towards zero β̃ is.

C.2.4 Two-way (forward/backward) regressions on differences

Consider the regression

yt+1,t+h = β̃ (xt−h+1,t − xt−2h+1,t−h) + εt+1,t+h.

Using the same methods as before, one can show that, if h = 2:

β̃h=2 = −β
2

and R2
h=2 =

1

2

[7 + ρj ]

[5− ρj ]
.

If h = 3:

β̃h=3 = β

[ [
9
4 −

5
4ρj
]

9− 15
2 ρj + 1

2ρ
2
j

]
and R2

h=3 =

[ [
9
4 −

5
4ρj
]

9− 15
2 ρj + 1

2ρ
2
j

]2
[
9− 15

2 ρj + 1
2ρ

2
j

]
3− 2ρj

.

If h = 1:

β̃h=1 =
β

2

[
1 + 3ρj
3 + ρj

]
and

R2
h=1 =

1

4

[
1 + 3ρj
3 + ρj

]2 [3 + ρj
2

]
.
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Hence, when scale-wise predictability applies to a scale operating between 2j
∗−1 and 2j

∗
, two-way

aggregation on differences, rather than on levels, would yield - at h = 2j
∗−1 - a slope coefficient

whose sign is the opposite of the true sign. In our case, j∗ = 2 and h = 2. As shown, β̃h=2 = −β
2 .

We note that R2
h=2 = 1 if ρj = 1. Also, R2

h=2 reaches a minimum value of 0.5 for ρj = −1. Hence,
the magnitude of the coefficient of determination is sizeable in correspondence with h = 2. In
addition, R2

h=2 > R2
h=1 and R2

h=2 > R2
h=3 for all ρ, thereby leading to a tent-shaped behavior of

the R2s around h = 2.

D Data

The empirical analysis in Sections 7, is conducted using annual data on consumption and stock
returns from 1930 to 2014, i.e., the longest available sample. We take the view that this sample
is the most representative of the overall high/medium/low-frequency variation in asset prices and
macroeconomic data.

Aggregate consumption is from the Bureau of Economic Analysis (BEA), series 7.1, and is
defined as consumer expenditures on non-durables and services. Our measure of consumption
volatility is based on modeling consumption growth as following an AR(1) with an error variance
evolving as an heterogeneous ARCH model (see Muller, Dacorogna, Dave, Olsen, Pictet, and von
Weizsacker (1997)). The HARCH dynamics accommodates numerous heterogeneous information
arrival processes, see, e.g., Andersen and Bollerslev (1997). Similar results are obtained by modeling
consumption growth as following an AR(1)-GARCH(1,1), as in Bansal, Khatchatrian, and Yaron
(2005).

We use the NYSE/Amex value-weighted index with dividends as our market proxy, Rt+1. Return
data on the value-weighted market index are obtained from the Chicago Center for Research in
Security Prices (CRSP). The annual return series is constructed from monthly data under the
assumption of reinvestment at a zero-rate. The nominal short-term rate (Rf,t+1) is the yield on the
1-year Treasury bill.

The h-horizon continuously-compounded excess market return is calculated as rt+1,t+h = ret+1 +
. . .+ret+h, where ret+j = ln(Rt+j)− ln(Rf,t+j) is the 1-year excess logarithmic market return between
dates t+ j − 1 and t+ j, Rt+j is a simple gross return, and Rf,t+j is a gross risk-free rate (3-month
Treasury bill).

The market’s realized variance between the end of period t and the end of period t+n, a measure
of integrated volatility, is obtained by computing

v2
t,t+n =

tD∑
d=t1

r2
d,

where [t1, tD] denotes the sample of available daily returns between the end of period t and the end
of period t+ n, and rd is the market’s logarithmic return on day d.

The measure of economic policy uncertainty (EPU) is based on Baker, Bloom, and Davis (2013).
The On-line Appendix provides detailed variable descriptions, reference data sources, and give

links to downloadable data.
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E Rescaled t-statistics

Panels A1 and A2 in tables 3, 4 and 5 report, in curly brackets, the rescaled t-statistic recommended
by Valkanov (2003) for the hypothesis that the regression coefficient is zero.

Under Valkanov’s assumptions, when the forecasting horizon is a nontrivial fraction of the sample
size, the t-statistic to test whether the predictive variable is statistically different from zero diverges
at rate

√
T . Thus, to address this potential inferential problem in the context of a classical data

generating process (different from the one we advocate), we compute the rescaled t/
√
T statistic

(where T is the sample size), recommended by Valkanov (2003).
Valkanov (2003) shows that the rescaled t/

√
T statistic has a well-defined limiting distribution.

This distribution is, however, nonstandard and depends on two nuisance parameters, δ and c.
The parameter δ measures the covariance between innovations in the variable to be forecast and
innovations in some forecasting variable, call it xt. The parameter c measures deviations from unity
in the highest autoregressive root for xt, in a decreasing (at rate T ) neighborhood of 1. Both of
these parameters can be consistently estimated using the methodology described in Valkanov (2003).
With these estimates in hand, the rescaled t-statistic, t/

√
T , can be compared against critical values

computed as in Valkanov (2003).
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